• English
    • svenska
  • English 
    • English
    • svenska
  • Login
View Item 
  •   Home
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Kandidatuppsatser
  • View Item
  •   Home
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Kandidatuppsatser
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predicting Time Series Data collected from Software Measurements with Machine Learning Approaches

Abstract
The objective of this paper is to highlight the implementation of machine learning forecasting approaches in software development. The concept of data mining has been used in different areas in the industry. There is an existing gap in the field of applying machine learning in the context of software measurements. This thesis will be conducted in two parts. Part 1, a systematic literature review to pinpoint the most recognised machine learning approaches. While part 2 will test the found approaches in an experimental environment to determine the most suitable machine learning approach for the collected data. The data was collected in a previous study through a collection of automotive software measurements.
Degree
Student essay
URI
http://hdl.handle.net/2077/44652
Collections
  • Kandidatuppsatser
View/Open
Thesis (2.870Mb)
Date
2016-06-27
Author
Ali, Mohammad
Preenja, Harri
Keywords
Data mining
time series
machine learning
forecasting
prediction
Language
eng
Metadata
Show full item record

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV