• English
    • svenska
  • svenska 
    • English
    • svenska
  • Logga in
Redigera dokument 
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Kandidatuppsatser
  • Redigera dokument
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Kandidatuppsatser
  • Redigera dokument
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predicting software vulnerabilities using topic modeling

Sammanfattning
A vulnerability database for a large C++ program was used to mark source code files responsible for the vulnerability either as clean or vulnerable. The whole source code was used with latent Dirchlet allocation (LDA) to extract hidden topics from it. Each file was given a topic distribution probability, as well as the status of being either clean or vulnerable. This data was used to train machine learning algorithm to detect vulnerable source files, based only on their topic distribution. In total, three different sets of data were prepared from the original source code with varying number of topics, number of documents, and iterations of LDA performed. None of data sets showed ability to predict software vulnerability based on LDA and machine learning.
Examinationsnivå
Student essay
URL:
http://hdl.handle.net/2077/44667
Samlingar
  • Kandidatuppsatser
Fil(er)
Thesis (430.9Kb)
Datum
2016-06-27
Författare
Sileikis, Saimonas
Språk
eng
Metadata
Visa fullständig post

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV
 

 

Visa

VisaSamlingarI datumordningFörfattareTitlarNyckelordDenna samlingI datumordningFörfattareTitlarNyckelord

Mitt konto

Logga inRegistrera dig

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV