• English
    • svenska
  • svenska 
    • English
    • svenska
  • Logga in
Redigera dokument 
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Kandidatuppsatser
  • Redigera dokument
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Kandidatuppsatser
  • Redigera dokument
JavaScript is disabled for your browser. Some features of this site may not work without it.

Clustering Non-Stationary Data Streams with Online Deep Learning

Sammanfattning
With more devices connected, sensor data logged and people active in social networks, the trend towards working with dynamic data is clear. The number of applications where it becomes essential to perform real time analysis on data streams grows accordingly, each with its own challenges. From this area of data stream analysis we benchmark the performance of current state of the art clustering algorithms: CluStream, DenStream and ClusTree. We also adapt a Variational Autoencoder to perform in the context of non-stationary data streams and assess its generative capabilities for dimensionality reduction. From this limited lab experiment we show that while there is a significant improvement in the clustering accuracy of high dimensional datasets after a dimensionality reduction with a Variational Autoencoder, not all clustering algorithms benefit in the same way from it. Additionally we show that regardless of the clustering algorithm, no relevant improvement in the purity of the clusters could be obtained after the dimensionality reduction.
Examinationsnivå
Student essay
URL:
http://hdl.handle.net/2077/44782
Samlingar
  • Kandidatuppsatser
Fil(er)
gupea_2077_44782_6.pdf (4.446Mb)
Datum
2016-06-30
Författare
Hontabat, Aurélien
Rising, Magnus
Nyckelord
Clustering
Data Streams
Deep Learning
Dimensionality Reduction
Språk
eng
Metadata
Visa fullständig post

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV
 

 

Visa

VisaSamlingarI datumordningFörfattareTitlarNyckelordDenna samlingI datumordningFörfattareTitlarNyckelord

Mitt konto

Logga inRegistrera dig

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV