• English
    • svenska
  • English 
    • English
    • svenska
  • Login
View Item 
  •   Home
  • Student essays / Studentuppsatser
  • Graduate School
  • Master theses
  • View Item
  •   Home
  • Student essays / Studentuppsatser
  • Graduate School
  • Master theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Machines are Coming Non-parametric methods and bankruptcy prediction - An artificial neural network approach

Abstract
Prediction of corporates bankruptcies is a topic that has gained more importance in the last two decades. Improvement in data accessibility makes the topic of bankruptcy prediction models a widely studied area. This study looks at bankruptcy prediction from a non-parametric perspective, with a focus on artificial neural networks (ANNs). Inspired by the classical work by Altman (1968) this study models bankruptcies with classification techniques. Five different models - ANN, CART, k- NN, LDA and QDA are applied to Swedish, German and French firm level datasets. The study findings suggests the ANN method outperforms other methods with 86.49% prediction accuracy and struggles to separate the smallest companies in the dataset from the defaulted ones. It is also shown that an increase in number of hidden layers from 10 to 100 results in an increase of 1% in prediction accuracy but the effect is non-linear.
Degree
Master 2-years
Other description
MSc in Economics
URI
http://hdl.handle.net/2077/46742
Collections
  • Master theses
View/Open
gupea_2077_46742_1.pdf (2.240Mb)
Date
2016-09-09
Author
Demir, Ozan
Keywords
Bankruptcy prediction
machine learning
non-parametric methods
artificial neural networks.
Series/Report no.
Master Degree Project
2016:91
Language
eng
Metadata
Show full item record

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV