• English
    • svenska
  • svenska 
    • English
    • svenska
  • Logga in
Redigera dokument 
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Masteruppsatser
  • Redigera dokument
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Masteruppsatser
  • Redigera dokument
JavaScript is disabled for your browser. Some features of this site may not work without it.

Speech-to-speech translation using deep learning

Sammanfattning
Current state-of-the-art translation systems for speech-to-speech rely heavily on a text representation for the translation. By transcoding speech to text we lose important information about the characteristics of the voice such as the emotion, pitch and accent. This thesis examine the possibility of using an LSTM neural network model to translate speech-to-speech without the need of a text representation. That is by translating using the raw audio data directly in order to persevere the characteristics of the voice that otherwise get lost in the text transcoding part of the translation process. As part of this research we create a data set of phrases suitable for speech-to-speech translation tasks. The thesis result in a proof of concept system which need to scale the underlying deep neural network in order to work better.
Examinationsnivå
Student essay
URL:
http://hdl.handle.net/2077/51978
Samlingar
  • Masteruppsatser
Fil(er)
gupea_2077_51978_1.pdf (649.1Kb)
Datum
2017-03-17
Författare
Bredmar, Fredrik
Nyckelord
Neural Networks
Deep Learning
LSTM
RNN
Speech-to-speech translation
Språk
eng
Metadata
Visa fullständig post

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV
 

 

Visa

VisaSamlingarI datumordningFörfattareTitlarNyckelordDenna samlingI datumordningFörfattareTitlarNyckelord

Mitt konto

Logga inRegistrera dig

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV