• English
    • svenska
  • svenska 
    • English
    • svenska
  • Logga in
Redigera dokument 
  •   Startsida
  • Faculty of Science / Naturvetenskapliga fakulteten
  • Department of Chemistry and Molecular Biology / Institutionen för kemi och molekylärbiologi (2012-)
  • Doctoral Theses / Doktorsavhandlingar Institutionen för kemi och molekylärbiologi
  • Redigera dokument
  •   Startsida
  • Faculty of Science / Naturvetenskapliga fakulteten
  • Department of Chemistry and Molecular Biology / Institutionen för kemi och molekylärbiologi (2012-)
  • Doctoral Theses / Doktorsavhandlingar Institutionen för kemi och molekylärbiologi
  • Redigera dokument
JavaScript is disabled for your browser. Some features of this site may not work without it.

Atmospheric Chemistry of Volatile Organic Compounds: Oxidation Products, Mechanisms and Secondary Organic Aerosol Formation

Sammanfattning
The results from this work are a piece in understanding the complex puzzle of atmospheric aerosol formation. Secondary organic aerosol (SOA) formed by the oxidation of volatile organic compounds (VOC) in the atmosphere is a key component of air pollution with a strong negative impact on human health and influence on climate, but its formation is poorly understood. Because air pollution and climate change are major challenges facing modern societies, there is a clear need to better understand atmospheric SOA formation. SOA formation can be estimated from distributions of potential oxidation products, but such estimates are only as useful as the underlying chemical mechanisms and physical properties on which they are based. The work presented in this thesis was conducted to better characterize VOC oxidation products and the chemical mechanisms governing their formation. The SOA precursor compounds a-pinene and limonene (representing biogenic VOC) and 1,3,5- trimethylbenzene (TMB) (an anthropogenic VOC) were studied in the G-FROST and Go:PAM flow reactors to characterize their oxidation and the subsequent SOA-forming processes. Previously unknown compounds including dimer esters, carboxylic acids, nitrates and highly oxygenated molecules were identified using state-of-the-art mass spectrometric methods. These oxidation products were shown to be important SOA contributors and explicit mechanisms for their formation were proposed. Some of the identified compounds were suggested to be of extremely low volatility and thus important for new particle formation. Oxidation of TMB under conditions representative of urban environments reduced particle formation potential; this effect was attributed to the disruption of RO2 auto-oxidation cycles by NOx and subsequent nitrate formation at the expense of highly oxygenated molecules. During the course of this work, an automated algorithm was developed to extract compound-specific volatility data from FIGAERO thermograms. The scientific understanding of SOA formation would be greatly improved by a detailed knowledge of the products of VOC oxidation, the mechanisms by which they are formed, and their vapour pressures, all of which this work aims to contribute to.
Delarbeten
High-molecular weight dimer esters are major products in aerosols from -pinene ozonolysis and the boreal forest Kristensen, K., Watne, Å. K., Hammes, J., Lutz, A., Petäjä, T., Hallquist, M., Bilde, M. and Glasius, M.; Environ. Sci. Technol. Lett., 3 (8), 280–285, 2016; ::doi::10.1021/acs.estlett.6b00152
 
Characterization of organic nitrate constituents of secondary organic aerosol (SOA) from nitrate-radical-initiated oxidation of limonene using High-Resolution Chemical Ionization Mass Spectrometry Faxon, C., Hammes, J., Pathak, R. K., and Hallquist, M.; Atmos. Chem. Phys., 18, 5467-5481, 2018; ::doi::10.5194/acp-18-5467-2018
 
Carboxylic acids from limonene oxidation by ozone and OH radicals: Insights into mechanisms derived using a FIGAERO-CIMS Hammes, J., Lutz, A., Mentel, T., Faxon, C. and Hallquist, M.; Atmos. Chem. Phys. Discuss., in review, 2018; ::doi::10.5194/acp-2018-1004
 
Effect of NOx on 1,3,5-trimethylbenzene (TMB) oxidation product distribution and particle formation Hammes, J., Tsiligiannis, E., Mentel, T. and Hallquist, M.; Manuscript in preparation, 2018
 
A method for extracting calibrated volatility information from the FIGAERO-HR-ToF-CIMS and application to chamber and field work studies Bannan, T. J., Le Breton, M., Priestley, M., Worrall S. D., Bacak, A., Marsden, N., Hammes, J., Hallquist, M., Alfarra R., Krieger U. K., Reid, J., Jayne J., Gordon McFiggans, G., Hugh Coe, H., Percival, C. J. and Topping, D.; ::doi::10.5194/amt-2018-255
 
Examinationsnivå
Doctor of Philosophy
Universitet
University of Gothenburg. Faculty of Science
Institution
Department of Chemistry and Molecular Biology ; Institutionen för kemi och molekylärbiologi
Disputation
Onsdagen den 6 February 2019, kl 10.00, KB, Kemigården 4
Datum för disputation
2019-02-06
E-post
juliahpunkt@gmail.com
URL:
http://hdl.handle.net/2077/58315
Samlingar
  • Doctoral Theses / Doktorsavhandlingar Institutionen för kemi och molekylärbiologi
  • Doctoral Theses from University of Gothenburg / Doktorsavhandlingar från Göteborgs universitet
Fil(er)
Kappa (2.687Mb)
Spikbald (195.1Kb)
Datum
2019-01-15
Författare
Hammes, Julia
Nyckelord
SOA
VOC
anthropogenic
biogenic
FIGAERO
CIMS
HOMs
ELVOCs
atmospheric oxidation
chemical mechanism
NOx
limonene
a-pinene
TMB
ozone
nitrate
OH
radical chemistry
RO2
G-FROST
GO:PAM
Publikationstyp
Doctoral thesis
ISBN
978-91-7833-069-0
Språk
eng
Metadata
Visa fullständig post

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV
 

 

Visa

VisaSamlingarI datumordningFörfattareTitlarNyckelordDenna samlingI datumordningFörfattareTitlarNyckelord

Mitt konto

Logga inRegistrera dig

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV