• English
    • svenska
  • svenska 
    • English
    • svenska
  • Logga in
Redigera dokument 
  •   Startsida
  • Faculty of Science / Naturvetenskapliga fakulteten
  • Department of Mathematical Sciences / Institutionen för matematiska vetenskaper
  • Doctoral Theses / Doktorsavhandlingar Institutionen för matematiska vetenskaper
  • Redigera dokument
  •   Startsida
  • Faculty of Science / Naturvetenskapliga fakulteten
  • Department of Mathematical Sciences / Institutionen för matematiska vetenskaper
  • Doctoral Theses / Doktorsavhandlingar Institutionen för matematiska vetenskaper
  • Redigera dokument
JavaScript is disabled for your browser. Some features of this site may not work without it.

Spectral properties of elliptic operators in singular settings and applications

Sammanfattning
The present thesis is focused on the investigation of the spectral properties of the linear elliptic operators in the presence of singularities. It is divided into three chapters. In the first chapter, we consider geometric singularities. We construct the heat kernel on surfaces with corners for Dirichlet, Neumann, and Robin boundary conditions as well as mixed problems. We compute the short time asymptotic expansion of the heat trace and apply this expansion to demonstrate a collection of results showing that corners are spectral invariants. The second chapter deals with linear elliptic second-order partial differential operators with bounded real-valued measurable coefficients. We emphasize that no smoothness assumptions are made on the coefficients. In the first half of this chapter, we study a time-harmonic electromagnetic and acoustic waveguide, modeled by an infinite cylinder with a non-smooth cross section. We introduce an infinitesimal generator for the wave evolution along the cylinder and prove estimates of the functional calculi of these first order non-self adjoint differential operators with non-smooth coefficients. Applying our new functional calculus, we obtain a one-to-one correspondence between polynomially bounded time-harmonic waves and functions in appropriate spectral subspaces. In the second half, we derive Weyl's law for the weighted Laplace equation on Riemannian manifolds with rough metric. Key ingredients in the proofs were demonstrated by Birman and Solomyak nearly fifty years ago in their seminal work on eigenvalue asymptotics. In the last chapter, we investigate spectral properties of Sturm-Liouville operators with singular potentials. We consider different types of singularities. We find asymptotic formulas for the eigenvalues of the Sturm-Liouville operator on the finite interval, with potentials having a strong negative singularity at one endpoint. We establish that, unlike the case of an infinite interval, the asymptotics for positive eigenvalues does not depend on the potential, and it is the same as in the regular case. The asymptotics of the negative eigenvalues may depend on the potential quite strongly. Next, we study the perturbation of the generalized anharmonic oscillator. We consider a piecewise Hölder continuous perturbation and investigate how the Hölder constant can affect the eigenvalues. Finally, for the the Sturm-Liouville operator with $\delta$-interactions, two-sided estimates of the distribution function of the eigenvalues and a criterion for the discreteness of the spectrum in terms of the Otelbaev function are obtained.
Delarbeten
Nursultanov M., Rowlett J., Sher D. (2019) How to Hear the Corners of a Drum. In: Wood D., de Gier J., Praeger C., Tao T. (eds) 2017 MATRIX Annals. MATRIX Book Series, vol 2. Springer, Cham, ::doi::10.1007/978-3-030-04161-8_18
 
Medet Nursultanov, Julie Rowlett, David A. Sher, The heat kernel on curvilinear polygonal domains in surfaces (Preprint).
 
Nursultanov, M. & Rosén, Evolution of time-harmonic electromagnetic and acoustic waves along waveguides, A. Integr. Equ. Oper. Theory (2018) 90: 53. ::doi::10.1007/s00020-018-2472-4
 
Lashi Bandara, Medet Nursultanov, Julie Rowlett, Eigenvalue asymptotics for weighted Laplace equations on rough Riemannian manifolds with boundary (Preprint).
 
Medet Nursultanov, Grigori Rozenblum, Eigenvalue asymptotics for the Sturm-Liouville operator with potential having a strong local negative singularity, Opuscula Math. 37, no. 1 (2017), 109-139, ::doi::10.7494/OpMath.2017.37.1.109
 
Ksenia Fedosova, Medet Nursultanov, The asymptotic expansion for the spectrum of a generalized anharmonic oscillator (Preprint).
 
Medet Nursultanov, Spectral properties of the Schrödinger operator with δ-distribution, Math Notes (2016) 100: 263. ::doi::10.1134/S000143461607021X
 
Examinationsnivå
Doctor of Philosophy
Universitet
Göteborgs universitet. Naturvetenskapliga fakulteten
Institution
Department of Mathematical Sciences ; Institutionen för matematiska vetenskaper
Disputation
Onsdagen den 12 juni 2019 klockan 13.00 i rummet Pascal,
Datum för disputation
2019-06-12
E-post
medet@chalmers.se
URL:
http://hdl.handle.net/2077/59803
Samlingar
  • Doctoral Theses / Doktorsavhandlingar Institutionen för matematiska vetenskaper
  • Doctoral Theses from University of Gothenburg / Doktorsavhandlingar från Göteborgs universitet
Fil(er)
Thesis without articles (323.6Kb)
Spikblad (195.4Kb)
Datum
2019-05-22
Författare
Nursultanov, Medet
Publikationstyp
Doctoral thesis
ISBN
978-91-7833-497-1 (printed version)
978-91-7833-496-4 (electronic version)
Språk
eng
Metadata
Visa fullständig post

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV
 

 

Visa

VisaSamlingarI datumordningFörfattareTitlarNyckelordDenna samlingI datumordningFörfattareTitlarNyckelord

Mitt konto

Logga inRegistrera dig

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV