• English
    • svenska
  • svenska 
    • English
    • svenska
  • Logga in
Redigera dokument 
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Masteruppsatser
  • Redigera dokument
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Masteruppsatser
  • Redigera dokument
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning Geometry Compatibility with 3D Convolutional Neural Networks

Sammanfattning
Modern video games offer substantial amounts of customization options. Manually testing the visual compatibility of all options is time-consuming and error-prone. Together with Ghost Games, we present a method of learning the visual compatibility between pairs of geometries. We introduce a transformation pipeline and model architecture, which we train on hand-labeled data. Furthermore, we explore a part of the hyperparameter space of our proposed architecture and extend it to accommodate confidence predictions. Finally, we run a quantitative study on the trained model and suggest improvements and extensions for future work.
Examinationsnivå
Student essay
URL:
http://hdl.handle.net/2077/62034
Samlingar
  • Masteruppsatser
Fil(er)
gupea_2077_62034_1.pdf (14.76Mb)
Datum
2019-10-04
Författare
Stellbrink, Florian
Nyckelord
computer science
computer graphics
machine learning
geometry
voxel
thesis
Språk
eng
Metadata
Visa fullständig post

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV
 

 

Visa

VisaSamlingarI datumordningFörfattareTitlarNyckelordDenna samlingI datumordningFörfattareTitlarNyckelord

Mitt konto

Logga inRegistrera dig

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV