• English
    • svenska
  • svenska 
    • English
    • svenska
  • Logga in
Redigera dokument 
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Masteruppsatser
  • Redigera dokument
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Masteruppsatser
  • Redigera dokument
JavaScript is disabled for your browser. Some features of this site may not work without it.

Searching For Relevant Features To Classify Crew Pairing Problems

Sammanfattning
Machine learning (ML) is an emerging technology. Jeppesen, a leader of commercial optimization products in the airline industry, has started exploring ML methods to facilitate optimization algorithm development. This thesis investigates one of the company’s products, the crew pairing optimizer. The optimizer can use different algorithms to solve crew pairing problems, and the thesis looks into what features of a pairing problem influence algorithm selection, i.e. the best choice of algorithm for a problem, based on the performance of different algorithms. With little prior knowledge about features of pairing problems and their relation with algorithm performance, using ML, the thesis first generates over twenty features, and then uses different feature selection methods to find the most informative feature subsets. Each feature subset is then fed into multiple classifiers to test its robustness. Besides ML, the thesis also includes statistical analysis as a comparison. The thesis has some interesting findings, including a subset of features that might influence algorithm performance. However, none of the methods used can find a feature subset to accurately classify the pairing problems by the best performing algorithm. The thesis discusses possible reasons for the results. It also lists what to consider before applying ML to real-world problems.
Examinationsnivå
Student essay
URL:
http://hdl.handle.net/2077/62179
Samlingar
  • Masteruppsatser
Fil(er)
gupea_2077_62179_1.pdf (25.01Mb)
Datum
2019-10-21
Författare
Guo, Jin
Nyckelord
Machine learning
airline crew pairing
feature selection
algorithm selection
classification
Språk
eng
Metadata
Visa fullständig post

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV
 

 

Visa

VisaSamlingarI datumordningFörfattareTitlarNyckelordDenna samlingI datumordningFörfattareTitlarNyckelord

Mitt konto

Logga inRegistrera dig

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV