• English
    • svenska
  • svenska 
    • English
    • svenska
  • Logga in
Redigera dokument 
  •   Startsida
  • Faculty of Science / Naturvetenskapliga fakulteten
  • Department of Chemistry and Molecular Biology / Institutionen för kemi och molekylärbiologi (2012-)
  • Doctoral Theses / Doktorsavhandlingar Institutionen för kemi och molekylärbiologi
  • Redigera dokument
  •   Startsida
  • Faculty of Science / Naturvetenskapliga fakulteten
  • Department of Chemistry and Molecular Biology / Institutionen för kemi och molekylärbiologi (2012-)
  • Doctoral Theses / Doktorsavhandlingar Institutionen för kemi och molekylärbiologi
  • Redigera dokument
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modeling and exploring human IRE1 as a strategy to design novel inhibitors: a computational approach

Sammanfattning
Inositol Requiring Enzyme 1 (IRE1) is a bifunctional serine/threonine kinase and endoribonuclease that is the major mediator of the Unfolded Protein Response (UPR) during endoplasmic reticulum (ER) stress. The association of IRE1 dysregulation with a wide range of human diseases, stimulated research towards the discovery of small organic molecules able to modulate IRE1 signalling, and to potentially be used as novel therapeutics. In this thesis we performed in silico three-dimensional (3D) molecular modeling analysis encompassing: (i) the selection of suitable protocols for docking and virtual screening in the IRE1 serine/threonine kinase and endoribonuclease domains studies, (ii) the exploration of IRE1 and PERK ligand interaction networks, (iii) the study of IRE1-ligand recognition phenomena in order to understand the mechanism of action of IRE1 small organic modulators and (iv) offers important insights relevant to hit-discovery and lead optimization of novel IRE1 modulators. Our structure-based drug design approach provides useful information for designing improved IRE1 ligands, as confirmed by one soon-to-be-filed patents on new inhibitors targeting IRE1, developed during the PhD period.
Delarbeten
Carlesso, A.; Chintha, C.; Gorman, A. M.; Samali, A.; Eriksson, L. A. Binding Analysis of the Inositol-Requiring Enzyme 1 Kinase Domain. ACS Omega 2018, 3 (10), 13313–13322. DOI: https://pubs.acs.org/doi/10.1021/acsomega.8b01404
 
Carlesso, A.; Chintha, C.; Gorman, A. M.; Samali, A.; Eriksson, L. A. Merits and Pitfalls of Conventional and Covalent Docking in Identifying New Hydroxyl Aryl Aldehyde like Compounds as Human IRE1 Inhibitors. Sci. Rep. 2019, 9 (1), 3407. DOI: https://www.nature.com/articles/s41598-019-39939-z
 
Carlesso, A.; Eriksson, L. A. Selective Inhibition of IRE1 Signalling Mediated by MKC9989: New Insights from Molecular Docking and Molecular Dynamics Simulations. ChemistrySelect 2019, 4 (11), 3199–3203. DOI: https://doi.org/10.1002/slct.201900810
 
Carlesso A; Chintha C.; Gorman A. M.; Samali A.; Eriksson L. A. Effect of Kinase Inhibiting RNase Attenuator (KIRA) Compounds on the Formation of Face-to- Face Dimers of Inositol-Requiring Enzyme 1: Insights from Computational Modeling. Int J Mol Sci. 2019;20(22). DOI: https://www.mdpi.com/1422-0067/20/22/5538
 
Chintha, C.; Carlesso, A.; Gorman, A. M.; Samali, A.; Eriksson, L. A. Molecular modeling provides structural basis for PERK inhibitor selectivity towards RIPK1. Status: under revision
 
Doultsinos, D.; Carlesso, A.; Chintha, C.; Rainot , A. ; Paton, J.C.; Paton, A.W.; Samali, A.;Chevet, E.; Eriksson, L. A. Peptidomimetic-based identification of FDA approved compounds inhibiting IRE1 activity Status: Manuscript in preparation
 
Examinationsnivå
Doctor of Philosophy
Universitet
University of Gothenburg. Faculty of Science
Institution
Department of Chemistry and Molecular Biology ; Institutionen för kemi och molekylärbiologi
Disputation
fredag den 31 01 2020 kl.10.00 i Waldemar Sjölander
Datum för disputation
2020-01-31
E-post
antonio.carlesso@gu.se
URL:
http://hdl.handle.net/2077/62404
Samlingar
  • Doctoral Theses / Doktorsavhandlingar Institutionen för kemi och molekylärbiologi
  • Doctoral Theses from University of Gothenburg / Doktorsavhandlingar från Göteborgs universitet
Fil(er)
spikblad (1.768Mb)
PhD thesis without articles (12.46Mb)
Datum
2019-12-12
Författare
Carlesso, Antonio
Nyckelord
ER stress
unfolded protein response
cancer
inflammation
neurodegeneration
therapeutic targets
molecular docking
molecular dynamics
Publikationstyp
Doctoral thesis
ISBN
978-91-7833-755-2 (PDF)
978-91-7833-754-5 (PRINT)
Språk
eng
Metadata
Visa fullständig post

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV
 

 

Visa

VisaSamlingarI datumordningFörfattareTitlarNyckelordDenna samlingI datumordningFörfattareTitlarNyckelord

Mitt konto

Logga inRegistrera dig

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV