• English
    • svenska
  • English 
    • English
    • svenska
  • Login
View Item 
  •   Home
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Kandidatuppsatser
  • View Item
  •   Home
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Kandidatuppsatser
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Creating safer reward functions for reinforcement learning agents in the gridworld

Abstract
We adapted Goal-Oriented Action planning, a decision-making architecture common in video games into the machine learning world with the objective of creating a safer artificial intelligence. We evaluate it in randomly generated 2D grid-world scenarios and show that this adaptation can create a safer AI that also learns faster than conventional methods.
Degree
Student essay
URI
http://hdl.handle.net/2077/62445
Collections
  • Kandidatuppsatser
View/Open
CSE Group 18 - De Biase & Namgaudis (612.2Kb)
Date
2019-11-12
Author
De Biase, Andres
Namgaudis, Mantas
Language
eng
Metadata
Show full item record

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV