Show simple item record

dc.contributor.authorDe Biase, Andres
dc.contributor.authorNamgaudis, Mantas
dc.date.accessioned2019-11-12T11:20:08Z
dc.date.available2019-11-12T11:20:08Z
dc.date.issued2019-11-12
dc.identifier.urihttp://hdl.handle.net/2077/62445
dc.description.abstractWe adapted Goal-Oriented Action planning, a decision-making architecture common in video games into the machine learning world with the objective of creating a safer artificial intelligence. We evaluate it in randomly generated 2D grid-world scenarios and show that this adaptation can create a safer AI that also learns faster than conventional methods.sv
dc.language.isoengsv
dc.titleCreating safer reward functions for reinforcement learning agents in the gridworldsv
dc.typetext
dc.setspec.uppsokTechnology
dc.type.uppsokM2
dc.contributor.departmentGöteborgs universitet/Institutionen för data- och informationsteknikswe
dc.contributor.departmentUniversity of Gothenburg/Department of Computer Science and Engineeringeng
dc.type.degreeStudent essay


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record