• English
    • svenska
  • svenska 
    • English
    • svenska
  • Logga in
Redigera dokument 
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Masteruppsatser
  • Redigera dokument
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Masteruppsatser
  • Redigera dokument
JavaScript is disabled for your browser. Some features of this site may not work without it.

Investigating Content-based Fake News Detection using Knowledge Graphs

A closer look at the 2016 U.S. Presidential Elections and potential analogies for the Swedish Context

Sammanfattning
In recent years, fake news has become a pervasive reality of global news consumption. While research on fake news detection is ongoing, smaller languages such as Swedish are often left exposed by an under-representation in research. The biggest challenge lies in detecting news that is continuously shape-shifting to look just like the real thing — powered by increasingly complex generative algorithms such as GPT-2. Fact-checking may have a much larger role to play in the future. To that end, this project considers knowledge graph embedding models that are trained on news articles from the 2016 U.S. Presidential Elections. In this project, we show that incomplete knowledge graphs created from only a small set of news articles can detect fake news with an F-score of 0.74 for previously seen entities and relations. We also show that the model trained on English language data provides some useful insights for labelling Swedish-language news articles of the same event domain and same time horizon.
Examinationsnivå
Student essay
URL:
http://hdl.handle.net/2077/62582
Samlingar
  • Masteruppsatser
Fil(er)
Investigating Content-based Fake News Detection using Knowledge Graphs (2.356Mb)
Datum
2019-11-21
Författare
Germishuys, Jurie
Nyckelord
fake news
knowledge graphs
embedding models
natural language processing
generative models
Swedish
Språk
eng
Metadata
Visa fullständig post

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV
 

 

Visa

VisaSamlingarI datumordningFörfattareTitlarNyckelordDenna samlingI datumordningFörfattareTitlarNyckelord

Mitt konto

Logga inRegistrera dig

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV