• English
    • svenska
  • svenska 
    • English
    • svenska
  • Logga in
Redigera dokument 
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Mathematical Sciences / Institutionen för matematiska vetenskaper
  • Masteruppsatser
  • Redigera dokument
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Mathematical Sciences / Institutionen för matematiska vetenskaper
  • Masteruppsatser
  • Redigera dokument
JavaScript is disabled for your browser. Some features of this site may not work without it.

Simulation and statistical methods for stochastic differental equations

Sammanfattning
We look at numerical methods for simulation of stochastic differential equations exhibiting volatility induced stationarity. This is a property of the process which means that the stationary behaviour is mostly imposed by how volatile the process is. The property creates issues in simulation and hence also in statistical methods. The methods considered for simulations are the fully implicit Euler scheme and timechanged simulation. We look at statistical methods for estimation of parameters. The specific statistical methods we investigate is the likelihood ratio, which gives expressions for the drift parameters for CKLS and least squares estimation, which is used together with quadratic variation to estimate parameters in different models. v
Examinationsnivå
Student essay
Övrig beskrivning
We look at numerical methods for simulation of stochastic differential equations exhibiting volatility induced stationarity. This is a property of the process which means that the stationary behaviour is mostly imposed by how volatile the process is. The property creates issues in simulation and hence also in statistical methods. The methods considered for simulations are the fully implicit Euler scheme and timechanged simulation. We look at statistical methods for estimation of parameters. The specific statistical methods we investigate is the likelihood ratio, which gives expressions for the drift parameters for CKLS and least squares estimation, which is used together with quadratic variation to estimate parameters in different models. v
URL:
http://hdl.handle.net/2077/62842
Samlingar
  • Masteruppsatser
Fil(er)
gupea_2077_62842_1.pdf (968.6Kb)
Datum
2019-12-16
Författare
Källgren, Christian
Metadata
Visa fullständig post

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV
 

 

Visa

VisaSamlingarI datumordningFörfattareTitlarNyckelordDenna samlingI datumordningFörfattareTitlarNyckelord

Mitt konto

Logga inRegistrera dig

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV