• English
    • svenska
  • svenska 
    • English
    • svenska
  • Logga in
Redigera dokument 
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Masteruppsatser
  • Redigera dokument
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Masteruppsatser
  • Redigera dokument
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predicting Pedestrian Counts per Street Segment in Urban Environments

Predicting Pedestrian Counts per Street Segment in Urban Environments

Sammanfattning
Cities are continuously growing all over the world and the complexity of designing urban environments increases. Therefore, there is a need to build a better understanding in how our cities work today. One of the essential parts of this is understanding the pedestrian movement. Using pedestrian count data from Amsterdam, London and Stockholm, this thesis explore new variables to further explain pedestrian counts using negative binomial and random forest. The models explored includes variables that represent street centrality, built density, land division, attractions and the road network. The result of the thesis suggests ways for variables to be represented or created to increase the explanatory value in regards to pedestrian counts. These suggestions include: including street centrality measurements at multiple scales, attraction counts within the surrounding area instead of counts on the street segment, counting attractions instead of calculating the distance to the nearest attraction, using network reach to constrain the network at different scales instead of bounding box, and counting intersections in the road network instead of computing the network length.
Examinationsnivå
Student essay
URL:
http://hdl.handle.net/2077/65589
Samlingar
  • Masteruppsatser
Fil(er)
Master thesis (17.09Mb)
Datum
2020-07-08
Författare
Karlsson, Simon
Nyckelord
data science
pedestrian movement
machine learning
random forest
negative binomial
spatial morphology
road network
street centrality
built environment
built density
attractions
land division
Serie/rapportnr.
CSE 20-03
Språk
eng
Metadata
Visa fullständig post

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV
 

 

Visa

VisaSamlingarI datumordningFörfattareTitlarNyckelordDenna samlingI datumordningFörfattareTitlarNyckelord

Mitt konto

Logga inRegistrera dig

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV