• English
    • svenska
  • English 
    • English
    • svenska
  • Login
View Item 
  •   Home
  • Student essays / Studentuppsatser
  • Department of Mathematical Sciences / Institutionen för matematiska vetenskaper
  • Masteruppsatser
  • View Item
  •   Home
  • Student essays / Studentuppsatser
  • Department of Mathematical Sciences / Institutionen för matematiska vetenskaper
  • Masteruppsatser
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Always Look on the Positive-Definite Side of Life

Always Look on the Positive-Definite Side of Life

Abstract
This thesis concerns distributions on Rn with the property of being positive-definite relative to a finite subgroup of the orthogonal group O(n). We construct examples of such distributions as the inverse Abel transform of Dirac combs on the geometries of Euclidean space Rn and the real- and complex hyperbolic plane H2, H2 C. In the case of R3 we obtain Guinand’s distribution as the inverse Abel transform of the Dirac comb on the standard lattice Z3 Ç R3. The main theorem of the paper is due to Bopp, Gelfand-Vilenkin and Krein, stating that a distribution on Rn is positive-definite relative to a finite subgroup W Ç O(n) if and only if it is the Fourier transform of a positive W-invariant Radon measure on n z 2 Cn : z 2W.z o ½ Cn . We present Bopp’s proof of this theorem using a version of the Plancherel-Godement theorem for complex commutative ¤-algebras.
Degree
Student essay
URI
http://hdl.handle.net/2077/67033
Collections
  • Masteruppsatser
View/Open
Thesis (472.8Kb)
Date
2020-11-24
Author
Byléhn, Mattias
Keywords
Poisson summation, positive-definite distributions, Abel transform, Guinand’s distribution, relatively positive-definite distributions, Krein’s theorem, Krein measures
Language
eng
Metadata
Show full item record

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV