Visa enkel post

dc.contributor.authorLindström, Maria
dc.date.accessioned2020-12-04T13:11:54Z
dc.date.available2020-12-04T13:11:54Z
dc.date.issued2020-12-04
dc.identifier.urihttp://hdl.handle.net/2077/67106
dc.description.abstractWe investigate group invariance in unsupervised learning in the context of certain generative networks based on Boltzmann machines. Specifically, we introduce a generalization of restricted Boltzmann machines which is adapted to input data that is acted upon by any compact group G. This is done by using certain G-equivariant convolutions between layers. We prove that the deep belief networks constructed from such Boltzmann machines define probability distributions that are invariant with respect to the action of G.sv
dc.language.isoengsv
dc.subjectConvolutional Boltzmann Machines, Convolutional neural networks, artificial neural networks, machine learning, group invariance, group equivariancesv
dc.titleGroup Invariant Convolutional Boltzmann Machinessv
dc.title.alternativeGroup Invariant Convolutional Boltzmann Machinessv
dc.typetext
dc.setspec.uppsokPhysicsChemistryMaths
dc.type.uppsokH2
dc.contributor.departmentUniversity of Gothenburg/Department of Mathematical Scienceeng
dc.contributor.departmentGöteborgs universitet/Institutionen för matematiska vetenskaperswe
dc.type.degreeStudent essay


Filer under denna titel

Thumbnail

Dokumentet tillhör följande samling(ar)

Visa enkel post