• English
    • svenska
  • English 
    • English
    • svenska
  • Login
View Item 
  •   Home
  • Student essays / Studentuppsatser
  • Department of Mathematical Sciences / Institutionen för matematiska vetenskaper
  • Masteruppsatser
  • View Item
  •   Home
  • Student essays / Studentuppsatser
  • Department of Mathematical Sciences / Institutionen för matematiska vetenskaper
  • Masteruppsatser
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effective quasiparallelogram laws on elliptic curves over number fields

Effective quasiparallelogram laws on elliptic curves over number fields

Abstract
We introduce the classical theory of heights on projective space and prove explicit quasiparallelogram laws for the ordinary height and the naive height on elliptic curves over number fields with shortWeierstrass equations. As corollaries, we obtain bounds for the differences between the classical heights and the canonical height, similar to the well-known Silverman bounds. The results are analyzed through a number of examples.
Degree
Student essay
URI
http://hdl.handle.net/2077/68457
Collections
  • Masteruppsatser
View/Open
Effective quasiparallelogram laws on elliptic curves over number fields (435.9Kb)
Date
2021-05-21
Author
Molin, Douglas
Keywords
height, elliptic curve, quasiparallelogram law, canonical height, difference bounds
Language
eng
Metadata
Show full item record

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV