dc.contributor.author | Molin, Douglas | |
dc.date.accessioned | 2021-05-21T09:02:32Z | |
dc.date.available | 2021-05-21T09:02:32Z | |
dc.date.issued | 2021-05-21 | |
dc.identifier.uri | http://hdl.handle.net/2077/68457 | |
dc.description.abstract | We introduce the classical theory of heights on projective space and prove explicit
quasiparallelogram laws for the ordinary height and the naive height on elliptic
curves over number fields with shortWeierstrass equations. As corollaries, we obtain
bounds for the differences between the classical heights and the canonical height,
similar to the well-known Silverman bounds. The results are analyzed through a
number of examples. | sv |
dc.language.iso | eng | sv |
dc.subject | height, elliptic curve, quasiparallelogram law, canonical height, difference bounds | sv |
dc.title | Effective quasiparallelogram laws on elliptic curves over number fields | sv |
dc.title.alternative | Effective quasiparallelogram laws on elliptic curves over number fields | sv |
dc.type | text | |
dc.setspec.uppsok | PhysicsChemistryMaths | |
dc.type.uppsok | H2 | |
dc.contributor.department | University of Gothenburg/Department of Mathematical Science | eng |
dc.contributor.department | Göteborgs universitet/Institutionen för matematiska vetenskaper | swe |
dc.type.degree | Student essay | |