Show simple item record

dc.contributor.authorMolin, Douglas
dc.date.accessioned2021-05-21T09:02:32Z
dc.date.available2021-05-21T09:02:32Z
dc.date.issued2021-05-21
dc.identifier.urihttp://hdl.handle.net/2077/68457
dc.description.abstractWe introduce the classical theory of heights on projective space and prove explicit quasiparallelogram laws for the ordinary height and the naive height on elliptic curves over number fields with shortWeierstrass equations. As corollaries, we obtain bounds for the differences between the classical heights and the canonical height, similar to the well-known Silverman bounds. The results are analyzed through a number of examples.sv
dc.language.isoengsv
dc.subjectheight, elliptic curve, quasiparallelogram law, canonical height, difference boundssv
dc.titleEffective quasiparallelogram laws on elliptic curves over number fieldssv
dc.title.alternativeEffective quasiparallelogram laws on elliptic curves over number fieldssv
dc.typetext
dc.setspec.uppsokPhysicsChemistryMaths
dc.type.uppsokH2
dc.contributor.departmentUniversity of Gothenburg/Department of Mathematical Scienceeng
dc.contributor.departmentGöteborgs universitet/Institutionen för matematiska vetenskaperswe
dc.type.degreeStudent essay


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record