Matematiska såll, primtalstvillingar och Chens sats

No Thumbnail Available

Date

2021-07-01

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Matematisk sållteori har varit ett viktigt verktyg för många nutida resultat inom analytisk talteori. Med hjälp av Halberstam och Richerts Sieve Methods redogör vi för grundläggande sållteori med fokus på tillämpningar i studiet av primtalstvillingar. Vi bevisar och tillämpar varianter av Eratosthenes-Legendres såll, Bruns såll och Selbergs såll. Vi formulerar också de viktigaste resultaten från en utveckling av Selbergs såll för linjära problem. Avslutningsvis återger vi delar av beviset av Chens sats, som implicerar existensen av oändligt många par (p; p + 2) där p är ett primtal och p + 2 en produkt av maximalt 2 primtal.

Description

Keywords

Citation