• English
    • svenska
  • svenska 
    • English
    • svenska
  • Logga in
Redigera dokument 
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Masteruppsatser
  • Redigera dokument
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Masteruppsatser
  • Redigera dokument
JavaScript is disabled for your browser. Some features of this site may not work without it.

Driver Behavior Classification in Electric Vehicles

Sammanfattning
Studies have shown that driving style affects the energy consumption of electric vehicles, with aggressive driving consuming up to 30% more energy than moderate driving. Therefore, modeling of aggressive driving can provide a more precise estimation of the energy consumption and the remaining range of a vehicle. This study proposes driver behavior classification on vehicle-based measurements through several deep learning models: convolutional neural networks, long short-term memory recurrent neural networks, and self-attention models. The networks have been trained on two naturalistic driving datasets: a labeled dataset generated from a test vehicle on-site at Volvo Cars and unlabeled data collected from co-development Volvo Cars vehicles. The latter dataset has been annotated following rules and driving parameters quantifying the aggressiveness of driving style. The implemented models achieve promising results on both datasets, with the one-dimensional convolutional neural network yielding the highest test accuracy throughout experiments. One of our contributions is to use self-attention and deep convolutional neural networks with joint recurrence plots, which are appropriate for longer sequences because they bypass sequential training. The study also explores several active learning techniques such as uncertainty sampling, query by committee, active deep dropout, gradual pseudo labeling, and active learning for time-series data. These techniques showed variable results, with uncertainty sampling performing consistently better than random sampling. This study confirms the effectiveness of machine learning models in classifying driver behavior. It also shows that active learning can considerably decrease the need for training data.
Examinationsnivå
Student essay
URL:
http://hdl.handle.net/2077/69081
Samlingar
  • Masteruppsatser
Fil(er)
gupea_2077_69081_1.pdf (3.185Mb)
Datum
2021-07-06
Författare
COMUNI, FEDERICA
MÉSZÁROS, CHRISTOPHER
Nyckelord
Aggressive driver behavior
Driver behavior classification
Self-attention
Recurrence plots
active learning
Active deep dropout
Gradual pseudo labeling
Språk
eng
Metadata
Visa fullständig post

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV
 

 

Visa

VisaSamlingarI datumordningFörfattareTitlarNyckelordDenna samlingI datumordningFörfattareTitlarNyckelord

Mitt konto

Logga inRegistrera dig

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV