• English
    • svenska
  • svenska 
    • English
    • svenska
  • Logga in
Redigera dokument 
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Masteruppsatser
  • Redigera dokument
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Masteruppsatser
  • Redigera dokument
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ocean Exploration with Artificial Intelligence

Sammanfattning
Large and diverse data is crucial to train object detection systems properly and achieve satisfactory prediction performance. However, in some areas, such as ma rine science, gathering sufficient data is challenging and sometimes even infeasible. Working with limited data can result in overfitting and poor performance. Further more, underwater images suffer from various problems, like varying quality, which have to be considered. Therefore, alternative means need to be used to increase and enhance the data to facilitate marine scientists’ work. In this thesis, we explore building a more robust system to improve the detec tion accuracy for deepwater corals and analyze underwater movies under different conditions. We experiment with several Generative Adversarial Networks (GANs) to enhance and increase the training data. Our final system comprises two steps: Image Augmentation using StyleGAN2 combined with the augmentation strategy DiffAugment, and Object Detection using YOLOv4. The results indicate that generating realistic synthetic data combined with an ad vanced detector could provide marine scientists with the tool they need to extract species occurrence information from underwater movies. Our proposed system shows increased performance in different domains compared to prior work and the potential to overcome the limited data issue.
Examinationsnivå
Student essay
URL:
http://hdl.handle.net/2077/69094
Samlingar
  • Masteruppsatser
Fil(er)
gupea_2077_69094_1.pdf (41.15Mb)
Datum
2021-07-06
Författare
Al-Khateeb, Sarah
Bodlak, Lisa
Nyckelord
computer science
deep learning
generative adversarial networks
data augmentation
object detection
underwater image
computer vision
Språk
eng
Metadata
Visa fullständig post

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV
 

 

Visa

VisaSamlingarI datumordningFörfattareTitlarNyckelordDenna samlingI datumordningFörfattareTitlarNyckelord

Mitt konto

Logga inRegistrera dig

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV