• English
    • svenska
  • svenska 
    • English
    • svenska
  • Logga in
Redigera dokument 
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Philosophy,Lingustics and Theory of Science / Institutionen för filosofi, lingvistik och vetenskapsteori
  • Masteruppsatser / Master in Language Technology
  • Redigera dokument
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Philosophy,Lingustics and Theory of Science / Institutionen för filosofi, lingvistik och vetenskapsteori
  • Masteruppsatser / Master in Language Technology
  • Redigera dokument
JavaScript is disabled for your browser. Some features of this site may not work without it.

RESPONSIBLE WOMEN AND ANALYTICAL MEN Developing Swedish Gendered Lexica for Detection of Gender Bias in Job Advertisements

Sammanfattning
In this research, we examine gender bias in Swedish job advertisements with the use of gendered lexica. Gendered lexica can be employed to ascertain whether job advertisements are written with words that are associated with more masculine or feminine traits. The main purpose of this study is to investigate translating English gendered lexica using different machine translation methods: Google Translate, frequency-based and word-embedding-based. In the absence of a gold standard, we evaluated the translations by conducting quantitative and qualitative experiments. The embedding-based translation was evaluated as the most consistent method for the development of gendered lexica. Further testing of the embedding-based lexicon showed that Swedish job advertisements seem to be written with more feminine coded words, regardless of the gender of the majority of the workers in the advertised occupation. Advertisements for technical universities, specifically, tend to be written with more masculine coded words, while advertisements for universities that offer a wider range of education contain more feminine coded words.
Examinationsnivå
Student essay
URL:
http://hdl.handle.net/2077/69704
Samlingar
  • Masteruppsatser / Master in Language Technology
Fil(er)
master thesis (546.4Kb)
Datum
2021-09-27
Författare
Hansson, Saga
Mavromatakis, Konstantinos
Nyckelord
Gender Bias Detection
Machine Translation
Fairness in AI
Språk
eng
Metadata
Visa fullständig post

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV
 

 

Visa

VisaSamlingarI datumordningFörfattareTitlarNyckelordDenna samlingI datumordningFörfattareTitlarNyckelord

Mitt konto

Logga inRegistrera dig

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV