• English
    • svenska
  • svenska 
    • English
    • svenska
  • Logga in
Redigera dokument 
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Business Administration / Företagsekonomiska institutionen
  • Kandidatuppsatser Företagsekonomiska institutionen
  • Redigera dokument
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Business Administration / Företagsekonomiska institutionen
  • Kandidatuppsatser Företagsekonomiska institutionen
  • Redigera dokument
JavaScript is disabled for your browser. Some features of this site may not work without it.

Stock Price Prediction with Social Media Sentiment

Sammanfattning
This thesis investigates the correlation effects between social media sentiments and the stock price of AMZN and TSLA, by utilizing pre-trained machine learning models, so-called transformers, and lexicon-based models. The comments were fetched from two sources, Reddit and Twitter. Moreover, two different approaches to incorporating the sentiment for stock price prediction were implemented. Firstly, moving average sentiment cross-over signals were studied and compared with the buy-and-hold strategy, as a baseline. Secondly, a Long Short-Term Memory neural network, with the sentiment as an additional feature, was implemented and compared to a classic Long Short-Term Memory network which only utilizes the previous stock prices as input for the prediction. The study showed evidence of significant correlation. The results indicate that social media sentiment can prove useful for stock market predictions and that there is a need for further and more extensive research on the topic in order to make more general claims. Furthermore, the transformer models turned out to not be superior to the lexicon-based model.
Examinationsnivå
Student essay
URL:
https://hdl.handle.net/2077/72712
Samlingar
  • Kandidatuppsatser Företagsekonomiska institutionen
Fil(er)
21 22 31.pdf (9.668Mb)
Datum
2022-07-06
Författare
Cuskic, Marco
Nilsson, Christian
Remgård, Marcus
Nyckelord
Sentiment analysis, Machine learning, Financial time series, Stock price, Long Short-Term Memory
Serie/rapportnr.
IFE 21/22:31
Språk
eng
Metadata
Visa fullständig post

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV
 

 

Visa

VisaSamlingarI datumordningFörfattareTitlarNyckelordDenna samlingI datumordningFörfattareTitlarNyckelord

Mitt konto

Logga inRegistrera dig

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV