• English
    • svenska
  • svenska 
    • English
    • svenska
  • Logga in
Redigera dokument 
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Masteruppsatser
  • Redigera dokument
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Masteruppsatser
  • Redigera dokument
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analyzing the override strategy for collision avoidance functions

Sammanfattning
The automotive industry has been shifting towards leveraging intelligent software solutions to ensure safety and ease of use. However, ensuring safety during execution heavily depends on how the human user interacts with these automated systems. In particular, one of the most commonly used safety features in current vehicles is called Automatic Emergency Braking (AEB). Although this automatic function has been proven effective in practice, there still exists an option for the driver to override the functionality as needed. This motivates the question of understanding the underlying intention of the driver when performing an override, as this knowledge can further improve the system’s safety when encountering edge cases. In this work, we analyze the driver behavior using unsupervised machine learning models and demonstrate an effective overriding strategy for AEB, through which undesired AEB intervention can be overridden faster by an average of 0.5 seconds. If verified, the new strategy would directly impact vehicle safety and enhance the user experience.
Examinationsnivå
Student essay
URL:
https://hdl.handle.net/2077/73889
Samlingar
  • Masteruppsatser
Fil(er)
CSE 22-29 Varghaei Dehghani.pdf (2.850Mb)
Datum
2022-10-14
Författare
Varghaei, Amir
Dehghani, Samin
Nyckelord
Collision Avoidance
Driver behaviour
Data science
Driver override
K-means clustering
Time series clustering
Unsupervised learning
Språk
eng
Metadata
Visa fullständig post

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV
 

 

Visa

VisaSamlingarI datumordningFörfattareTitlarNyckelordDenna samlingI datumordningFörfattareTitlarNyckelord

Mitt konto

Logga inRegistrera dig

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV