• English
    • svenska
  • svenska 
    • English
    • svenska
  • Logga in
Redigera dokument 
  •   Startsida
  • Faculty of Science / Naturvetenskapliga fakulteten
  • Department of Mathematical Sciences / Institutionen för matematiska vetenskaper
  • Doctoral Theses / Doktorsavhandlingar Institutionen för matematiska vetenskaper
  • Redigera dokument
  •   Startsida
  • Faculty of Science / Naturvetenskapliga fakulteten
  • Department of Mathematical Sciences / Institutionen för matematiska vetenskaper
  • Doctoral Theses / Doktorsavhandlingar Institutionen för matematiska vetenskaper
  • Redigera dokument
JavaScript is disabled for your browser. Some features of this site may not work without it.

Limit Theorems for Lattices and L-functions

Sammanfattning
This PhD thesis investigates distributional questions related to three types of objects: Unimodular lattices, symplectic lattices, and Hecke L-functions of imaginary quadratic number fields of class number 1. In Paper I, we follow Södergren and examine the asymptotic joint distribution of a collection of random variables arising as geometric attributes of the N = N(n) shortest non-zero lattice vectors (up to sign) in a random unimodular lattice in n-dimensional Euclidean space, as the dimension n tends to infinity: Normalizations of the lengths of these vectors, and normalizations of the angles between them. We prove that under suitable conditions on N, this collection of random variables is asymptotically distributed like the first N arrival times of a Poisson process of intensity 1/2 and a collection of positive standard Gaußians. This generalizes previous work of Södergren. In Paper II, we use methods developed by Björklund and Gorodnik to study the error term in a classical lattice point counting asymptotic due to Schmidt in the context of symplectic lattices and a concrete increasing family of sets in 2n-dimensional Euclidean space. In particular, we show that this error term satisfies a central limit theorem as the volumes of the sets tend to infinity. Moreover, we obtain new Lp bounds on a height function on the space of symplectic lattices originally introduced by Schmidt. In Paper III, we follow Waxman and study a family of L-functions associated to angular Hecke characters on imaginary quadratic number fields of class number 1. We obtain asymptotic expressions for the 1-level density of the low-lying zeros in the family, both unconditionally and conditionally (under the assumption of the Grand Riemann Hypothesis and the Ratios Conjecture). Our results verify the Katz--Sarnak Density Conjecture in a special case for our family of L-functions.
Delarbeten
Paper I: Holm, Kristian, "On the distribution of angles between increasingly many short lattice vectors", J. Number Theory, vol. 240, 2022, 357--403. https://doi.org/10.1016/j.jnt.2022.02.001
 
Paper II: Holm, Kristian, "A Central Limit Theorem for Counting Functions Related to Symplectic Lattices and Bounded Sets", arXiv preprint. https://doi.org/10.48550/arXiv.2205.12637
 
Paper III: Holm, Kristian, "The 1-level Density for Zeros of Hecke L-functions of Imaginary Quadratic Number Fields of Class Number 1", preprint.
 
Examinationsnivå
Doctor of Philosophy
Universitet
University of Gothenburg. Faculty of Science
Institution
Department of Mathematical Sciences ; Institutionen för matematiska vetenskaper
Disputation
Fredagen den 20 januari 2023, kl. 9.00, Hörsal Pascal, Institutionen för Matematiska Vetenskaper, Chalmers Tvärgata 3
Datum för disputation
2023-01-20
E-post
holmkr@chalmers.se
URL:
https://hdl.handle.net/2077/74120
Samlingar
  • Doctoral Theses / Doktorsavhandlingar Institutionen för matematiska vetenskaper
Fil(er)
Thesis frame (1.154Mb)
Spikblad (75.64Kb)
Författare
Holm, Kristian
Nyckelord
Lattices
L-functions
Publikationstyp
Doctoral thesis
ISBN
978-91-8069-106-2
Språk
eng
Metadata
Visa fullständig post

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV
 

 

Visa

VisaSamlingarI datumordningFörfattareTitlarNyckelordDenna samlingI datumordningFörfattareTitlarNyckelord

Mitt konto

Logga inRegistrera dig

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV