Show simple item record

dc.contributor.authorJönsson, Maria
dc.date.accessioned2010-08-04T11:19:45Z
dc.date.available2010-08-04T11:19:45Z
dc.date.issued2010-08-04
dc.identifier.urihttp://hdl.handle.net/2077/23031
dc.description.abstractSeveral NLP-applications could benefit from identifying irony. Currently there is no process for doing so automatically. My findings suggest that irony occurs in up to 8.5% of online reviews. I identify three groups of irony based on the linguistic features they exhibit. I predict the irony in two of these groups are possible to identify automatically, covering 70% of the irony in my corpus. If my findings can be verified in a more exstensive investigation, I suspect my ideas can be applied to other domains than online reviews as well.sv
dc.language.isoengsv
dc.relation.ispartofseriesSPL kandidatuppsats i engelskasv
dc.relation.ispartofseriesSPL2010-006sv
dc.subjectsentiment classificationsv
dc.subjectironysv
dc.subjectsarcasmsv
dc.subjectopinion miningsv
dc.subjectsemantic polaritysv
dc.subjectreviewsv
dc.titleIrony in online reviews: A linguistic approach to identifying ironysv
dc.typeText
dc.setspec.uppsokHumanitiesTheology
dc.type.uppsokM2
dc.contributor.departmentUniversity of Gothenburg/Department of Languages and Literatureseng
dc.contributor.departmentGöteborgs universitet/Institutionen för språk och litteraturerswe
dc.type.degreeStudent essay


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record