• English
    • svenska
  • English 
    • English
    • svenska
  • Login
View Item 
  •   Home
  • Student essays / Studentuppsatser
  • Graduate School
  • Master theses
  • View Item
  •   Home
  • Student essays / Studentuppsatser
  • Graduate School
  • Master theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Volatility Forecasting in Bull & Bear Markets

Abstract
This thesis considers the performance of variance forecasting in bull and bear markets. Three asset indices, the DAX, the Standard & Poor’s 500 and the CurrencyShares Euro Trust, are split into bull and bear periods whereby variance forecasting is evaluated in the two states. I employ a simple moving average, an EWMA, implied volatilities from official volatility indices and three GARCH specifications; a GARCH (1,1) and EGARCH(1,1) with Student’s t errors and a GARCH (1,1) with Hansen’s skewed t errors. I compute 30 days ahead variance forecasts using daily data and the true latent variance is approximated by the intra-month realized variance. Performance is measured by the R2 from regressing the realized variance on the estimated variance, the QLIKE statistic and the MSE. I find that implied volatilities forecast best in bull markets and that the GARCH and EGARCH forecast best in bear markets. In general, the predictions’ R2 and QLIKE statistics suffer 30 % - 50 % in bear markets and the MSE is as much as 15 times higher compared to bull markets.
Degree
Master 2-years
Other description
MSc in Finance
URI
http://hdl.handle.net/2077/29996
Collections
  • Master theses
View/Open
gupea_2077_29996_1.pdf (897.9Kb)
Date
2012-07-25
Author
Ekvall, Karl Oskar
Series/Report no.
Master Degree Project
2012:94
Language
eng
Metadata
Show full item record

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV