Show simple item record

dc.contributor.authorStellbrink, Florian
dc.date.accessioned2019-10-04T08:00:46Z
dc.date.available2019-10-04T08:00:46Z
dc.date.issued2019-10-04
dc.identifier.urihttp://hdl.handle.net/2077/62034
dc.description.abstractModern video games offer substantial amounts of customization options. Manually testing the visual compatibility of all options is time-consuming and error-prone. Together with Ghost Games, we present a method of learning the visual compatibility between pairs of geometries. We introduce a transformation pipeline and model architecture, which we train on hand-labeled data. Furthermore, we explore a part of the hyperparameter space of our proposed architecture and extend it to accommodate confidence predictions. Finally, we run a quantitative study on the trained model and suggest improvements and extensions for future work.sv
dc.language.isoengsv
dc.subjectcomputer sciencesv
dc.subjectcomputer graphicssv
dc.subjectmachine learningsv
dc.subjectgeometrysv
dc.subjectvoxelsv
dc.subjectthesissv
dc.titleLearning Geometry Compatibility with 3D Convolutional Neural Networkssv
dc.typetext
dc.setspec.uppsokTechnology
dc.type.uppsokH2
dc.contributor.departmentGöteborgs universitet/Institutionen för data- och informationsteknikswe
dc.contributor.departmentUniversity of Gothenburg/Department of Computer Science and Engineeringeng
dc.type.degreeStudent essay


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record