• English
    • svenska
  • English 
    • English
    • svenska
  • Login
View Item 
  •   Home
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Masteruppsatser
  • View Item
  •   Home
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Masteruppsatser
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Good News AI Investigating feasibility of categorizing positive sentiment in general news

Good News AI Investigating feasibility of categorizing positive sentiment in general news

Abstract
In today’s society we are constantly fed information about catastrophic or sad events through media. While it is important to know about these events, it should be equally important to also see all the good things that are happening in our world. Therefore, this thesis proposes two algorithms for classifying full-length news articles to remove the non-positive articles. Traditionally these types of algorithms require a large amount of labelled data, but this thesis explores possibilities for sentiment classification with a limited amount of labelled data. The best performing algorithm presented is this thesis achieves a precision percentage of 98% with only 40 articles used for training.
Degree
Student essay
Other description
In today’s society we are constantly fed information about catastrophic or sad events through media. While it is important to know about these events, it should be equally important to also see all the good things that are happening in our world. Therefore, this thesis proposes two algorithms for classifying full-length news articles to remove the non-positive articles. Traditionally these types of algorithms require a large amount of labelled data, but this thesis explores possibilities for sentiment classification with a limited amount of labelled data. The best performing algorithm presented is this thesis achieves a precision percentage of 98% with only 40 articles used for training.
URI
http://hdl.handle.net/2077/65503
Collections
  • Masteruppsatser
View/Open
gupea_2077_65503_1.pdf (1.608Mb)
Date
2020-07-06
Author
Ludvigsson, Klas
Andersson, Magnus
Keywords
Computer
science
computer science
thesis
sentiment
classification
clustering
Language
eng
Metadata
Show full item record

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV