• English
    • svenska
  • svenska 
    • English
    • svenska
  • Logga in
Redigera dokument 
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Masteruppsatser
  • Redigera dokument
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Masteruppsatser
  • Redigera dokument
JavaScript is disabled for your browser. Some features of this site may not work without it.

Good News AI Investigating feasibility of categorizing positive sentiment in general news

Good News AI Investigating feasibility of categorizing positive sentiment in general news

Sammanfattning
In today’s society we are constantly fed information about catastrophic or sad events through media. While it is important to know about these events, it should be equally important to also see all the good things that are happening in our world. Therefore, this thesis proposes two algorithms for classifying full-length news articles to remove the non-positive articles. Traditionally these types of algorithms require a large amount of labelled data, but this thesis explores possibilities for sentiment classification with a limited amount of labelled data. The best performing algorithm presented is this thesis achieves a precision percentage of 98% with only 40 articles used for training.
Examinationsnivå
Student essay
Övrig beskrivning
In today’s society we are constantly fed information about catastrophic or sad events through media. While it is important to know about these events, it should be equally important to also see all the good things that are happening in our world. Therefore, this thesis proposes two algorithms for classifying full-length news articles to remove the non-positive articles. Traditionally these types of algorithms require a large amount of labelled data, but this thesis explores possibilities for sentiment classification with a limited amount of labelled data. The best performing algorithm presented is this thesis achieves a precision percentage of 98% with only 40 articles used for training.
URL:
http://hdl.handle.net/2077/65503
Samlingar
  • Masteruppsatser
Fil(er)
gupea_2077_65503_1.pdf (1.608Mb)
Datum
2020-07-06
Författare
Ludvigsson, Klas
Andersson, Magnus
Nyckelord
Computer
science
computer science
thesis
sentiment
classification
clustering
Språk
eng
Metadata
Visa fullständig post

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV
 

 

Visa

VisaSamlingarI datumordningFörfattareTitlarNyckelordDenna samlingI datumordningFörfattareTitlarNyckelord

Mitt konto

Logga inRegistrera dig

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV