• English
    • svenska
  • English 
    • English
    • svenska
  • Login
View Item 
  •   Home
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Masteruppsatser
  • View Item
  •   Home
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Masteruppsatser
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Resource Optimal Neural Networks for Safety-critical Real-time Systems

Resource Optimal Neural Networks for Safety-critical Real-time Systems

Abstract
Deep neural networks consume an excessive amount of hardware resources, making them difficult to deploy to real-time systems. Previous work in the field of network compression lack the explicit hardware feedback necessary to control the resource constraints imposed by such systems. Furthermore, when the system under discussion is safety-critical, additional constraints must be enforced to make sure that acceptable safety levels are achieved. In this work, we take a reinforcement learning approach with which we evaluate three different compression actions: filter pruning, channel pruning and Tucker decomposition. We found that channel pruning was the most consistent one as it satisfied the constraints specification on five of six test scenarios while providing compression and acceleration rates of 10-30% across most resource metrics. By further optimizing the networks with TensorRT, we managed to improve the resource efficiency of the reference networks by up to 6×.
Degree
Student essay
URI
http://hdl.handle.net/2077/65635
Collections
  • Masteruppsatser
View/Open
gupea_2077_65635_1.pdf (1.595Mb)
Date
2020-07-10
Author
Åkerström, Joakim
Keywords
Data science
machine learning
deep learning
neural networks
network compression
network acceleration
safety-critical systems
real-time systems
Language
eng
Metadata
Show full item record

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV