• English
    • svenska
  • svenska 
    • English
    • svenska
  • Logga in
Redigera dokument 
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Masteruppsatser
  • Redigera dokument
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Masteruppsatser
  • Redigera dokument
JavaScript is disabled for your browser. Some features of this site may not work without it.

Resource Optimal Neural Networks for Safety-critical Real-time Systems

Resource Optimal Neural Networks for Safety-critical Real-time Systems

Sammanfattning
Deep neural networks consume an excessive amount of hardware resources, making them difficult to deploy to real-time systems. Previous work in the field of network compression lack the explicit hardware feedback necessary to control the resource constraints imposed by such systems. Furthermore, when the system under discussion is safety-critical, additional constraints must be enforced to make sure that acceptable safety levels are achieved. In this work, we take a reinforcement learning approach with which we evaluate three different compression actions: filter pruning, channel pruning and Tucker decomposition. We found that channel pruning was the most consistent one as it satisfied the constraints specification on five of six test scenarios while providing compression and acceleration rates of 10-30% across most resource metrics. By further optimizing the networks with TensorRT, we managed to improve the resource efficiency of the reference networks by up to 6×.
Examinationsnivå
Student essay
URL:
http://hdl.handle.net/2077/65635
Samlingar
  • Masteruppsatser
Fil(er)
gupea_2077_65635_1.pdf (1.595Mb)
Datum
2020-07-10
Författare
Åkerström, Joakim
Nyckelord
Data science
machine learning
deep learning
neural networks
network compression
network acceleration
safety-critical systems
real-time systems
Språk
eng
Metadata
Visa fullständig post

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV
 

 

Visa

VisaSamlingarI datumordningFörfattareTitlarNyckelordDenna samlingI datumordningFörfattareTitlarNyckelord

Mitt konto

Logga inRegistrera dig

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV