• English
    • svenska
  • English 
    • English
    • svenska
  • Login
View Item 
  •   Home
  • Student essays / Studentuppsatser
  • Department of Mathematical Sciences / Institutionen för matematiska vetenskaper
  • Masteruppsatser
  • View Item
  •   Home
  • Student essays / Studentuppsatser
  • Department of Mathematical Sciences / Institutionen för matematiska vetenskaper
  • Masteruppsatser
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Group Invariant Convolutional Boltzmann Machines

Group Invariant Convolutional Boltzmann Machines

Abstract
We investigate group invariance in unsupervised learning in the context of certain generative networks based on Boltzmann machines. Specifically, we introduce a generalization of restricted Boltzmann machines which is adapted to input data that is acted upon by any compact group G. This is done by using certain G-equivariant convolutions between layers. We prove that the deep belief networks constructed from such Boltzmann machines define probability distributions that are invariant with respect to the action of G.
Degree
Student essay
URI
http://hdl.handle.net/2077/67106
Collections
  • Masteruppsatser
View/Open
gupea_2077_67106_1.pdf (786.5Kb)
Date
2020-12-04
Author
Lindström, Maria
Keywords
Convolutional Boltzmann Machines, Convolutional neural networks, artificial neural networks, machine learning, group invariance, group equivariance
Language
eng
Metadata
Show full item record

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV