• English
    • svenska
  • svenska 
    • English
    • svenska
  • Logga in
Redigera dokument 
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Mathematical Sciences / Institutionen för matematiska vetenskaper
  • Masteruppsatser
  • Redigera dokument
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Mathematical Sciences / Institutionen för matematiska vetenskaper
  • Masteruppsatser
  • Redigera dokument
JavaScript is disabled for your browser. Some features of this site may not work without it.

Group Invariant Convolutional Boltzmann Machines

Group Invariant Convolutional Boltzmann Machines

Sammanfattning
We investigate group invariance in unsupervised learning in the context of certain generative networks based on Boltzmann machines. Specifically, we introduce a generalization of restricted Boltzmann machines which is adapted to input data that is acted upon by any compact group G. This is done by using certain G-equivariant convolutions between layers. We prove that the deep belief networks constructed from such Boltzmann machines define probability distributions that are invariant with respect to the action of G.
Examinationsnivå
Student essay
URL:
http://hdl.handle.net/2077/67106
Samlingar
  • Masteruppsatser
Fil(er)
gupea_2077_67106_1.pdf (786.5Kb)
Datum
2020-12-04
Författare
Lindström, Maria
Nyckelord
Convolutional Boltzmann Machines, Convolutional neural networks, artificial neural networks, machine learning, group invariance, group equivariance
Språk
eng
Metadata
Visa fullständig post

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV
 

 

Visa

VisaSamlingarI datumordningFörfattareTitlarNyckelordDenna samlingI datumordningFörfattareTitlarNyckelord

Mitt konto

Logga inRegistrera dig

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV