• English
    • svenska
  • English 
    • English
    • svenska
  • Login
View Item 
  •   Home
  • Sahlgrenska Academy / Sahlgrenska akademin
  • Institute of Clinical Sciences / Institutionen för kliniska vetenskaper
  • Doctoral Theses / Doktorsavhandlingar Institutionen för kliniska vetenskaper
  • View Item
  •   Home
  • Sahlgrenska Academy / Sahlgrenska akademin
  • Institute of Clinical Sciences / Institutionen för kliniska vetenskaper
  • Doctoral Theses / Doktorsavhandlingar Institutionen för kliniska vetenskaper
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Microcirculation in tissue repair - from microsurgery to 3D bioprinting

Abstract
Microsurgical reconstruction is challenged by two main shortcomings: Perfusion Related Complication (PRC) and donor site morbidity. In the first 3 studies of this thesis, we aimed to provide solutions to PRC-problems, investigating hemodilution as a tool able to increase blood flow in flap microcirculation. In study I, we investigated the beneficial effect of hemodilution on the blood flow of a perforator free flap in a rat model and in study II, hemodilution was examined in a perforator pedicle flap. Overall, study I and study II showed that hemodilution improved flap survival. Study III, a systematic review of the current literature on hemodilution in microsurgery, demonstrated a lack of relevant clinical research on this topic in both clinical and experimental studies. The second part of this thesis aimed to investigate vascularization in 3D bioprinted constructs, a crucial step for bringing this technology into clinical practice, and thereby contribute to a solution to donor site morbidity. In both study IV (3D bioprinted microfractured fat) and V (3D bioprinted cartilage), the constructs were transplanted to nude mice and examined by longitudinal Magnetic Resonance Imaging, histology and immunohistochemistry. Results showed a perfusable vascular network growing around and into the constructs. In study IV, human blood vessels formed spontaneously from fragments of blood vessels in the lipoaspirate used for bioprinting. The blood vessels interconnected with the circulation of the host. In study V, the grid structure itself proved important for vascularization from the host. To summarize, this thesis shows that hemodilution could improve flap viability in microsurgical reconstructions but there is a lack of support for its effect in clinical studies. Vascularization of 3D bioprinted constructs can be achieved by printing with microfractured human fat. By printing in a gridded structure, vascularization can be further stimulated.
Parts of work
I. Amoroso M, Özkan Ö, Özkan Ö, Bassorgun CI, Ögan Ö, Ünal K, Longo B and Santanelli di Pompeo F. "The Effect of Normovolemic and Hypervolemic Hemodilution on a Microsurgical Model: Experimental study in Rats." Plast Reconstr Surg. 2015 Sep; 136:512-519 ::doi::10.1097/PRS.0000000000001525
 
II. Amoroso M, Özkan Ö, Bassorgun CI, Ögan Ö, Ünal K, Longo B, Santanelli di Pompeo F and Özkan Ö."The Effect of Normovolemic and Hypervolemic Hemodilution on a Perforator Flap with Twisted Pedicle Model: Experimental study in Rats." Plast Reconstr Surg. 2016 Feb; 13:339e-346 ::doi::10.1097/01.prs.0000475782.06704.8a
 
III. Amoroso M, Apelgren P, Elander A, Säljö K and Kölby L. "The effect of hemodilution on free flap survival: a systematic review of clinical and experimental studies." Clin Hemorheol Micro-circ. 2020 Vol.75(4), pp.457-466 ::doi::10.3233/CH-200832
 
IV. Amoroso M, Apelgren P, Säljö K, Montelius M, Strid Orrhult L, Engström M, Gatenholm P and Kölby L. ”Vascularization of 3D Bioprinted Fat – Functional and Morphological Studies of Self-assembly of Blood Vessels." Submitted
 
V. Apelgren P, Amoroso M, Säljö K, Montelius M, Lindahl A, Strid Orrhult L, Gatenholm P and Kölby L. "In Vivo MRI Reveals Functional Vascularization of Gridded 3D Bioprinted Cartilaginous Constructs." Submitted.
 
Degree
Doctor of Philosophy (Medicine)
University
University of Gothenburg. Sahlgrenska Academy
Institution
Institute of Clinical Sciences. Department of Plastic Surgery
Disputation
Fredagen den 26 Mars 2021, kl. 13.00, Hörsal Arvid Carlsson, Academicum, Medicinaregatan 3, Göteborg
Date of defence
2021-03-26
E-mail
matteo.amoroso@vgregion.se
URI
http://hdl.handle.net/2077/67131
Collections
  • Doctoral Theses / Doktorsavhandlingar Institutionen för kliniska vetenskaper
  • Doctoral Theses from Sahlgrenska Academy
  • Doctoral Theses from University of Gothenburg / Doktorsavhandlingar från Göteborgs universitet
View/Open
Abstract (268.9Kb)
Thesis frame (7.351Mb)
Cover (470.1Kb)
Date
2021-03-03
Author
Matteo, Amoroso
Keywords
Microsurgery
3D bioprinting
Publication type
Doctoral thesis
ISBN
978-91-8009-144-2 (PRINT)
978-91-8009-145-9 (PDF)
Language
eng
Metadata
Show full item record

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV