• English
    • svenska
  • English 
    • English
    • svenska
  • Login
View Item 
  •   Home
  • Student essays / Studentuppsatser
  • Graduate School
  • Master theses
  • View Item
  •   Home
  • Student essays / Studentuppsatser
  • Graduate School
  • Master theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predicting bankruptcies in Swedish manufacturing firms A comparison between traditional statistical and machine learning methods

Abstract
The purposeofthispaperistoexaminewhetherwecanpredictbankruptciesinSwedish industrial andmanufacturingSMEsbeforetheyoccur.Toconductthepredictionsweuse a traditionalstatisticalmodel,multiplediscriminantanalysis(MDA)andamoremodern machinelearningapproachinwhichweutilizesupportvectormachines(SVM).Wethen compare thetwomodelsinordertofindoutwhichofthemperformsthebest.Further,we examine howmanyyearspriortofailureweareabletopredictthebankruptcy,andthus test bothmodelsuptofiveyearspriortofailure.Ourresultssuggestthatweareableto predict bankruptcieswithsignificantlyhigheraccuracythana50/50guessingstrategy. Further,wefoundwewereabletopredictbankruptciesupthefiveyearspriortothem occurring,usingboththetraditionalMDAmodelandtheSVMmodel.Whencomparing the twowefoundtheMDAmodelachievehigherpredictionaccuracyoneyearpriorto failure.
Degree
Master 2-years
Other description
MSc in Finance
URI
https://hdl.handle.net/2077/72392
Collections
  • Master theses
View/Open
2022-152.pdf (2.659Mb)
Date
2022-06-29
Author
Akgün Dehiller, Dennis
Arif, Milan
Series/Report no.
2022:152
Language
eng
Metadata
Show full item record

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV