Predicting bankruptcies in Swedish manufacturing firms A comparison between traditional statistical and machine learning methods
Abstract
The purposeofthispaperistoexaminewhetherwecanpredictbankruptciesinSwedish
industrial andmanufacturingSMEsbeforetheyoccur.Toconductthepredictionsweuse
a traditionalstatisticalmodel,multiplediscriminantanalysis(MDA)andamoremodern
machinelearningapproachinwhichweutilizesupportvectormachines(SVM).Wethen
compare thetwomodelsinordertofindoutwhichofthemperformsthebest.Further,we
examine howmanyyearspriortofailureweareabletopredictthebankruptcy,andthus
test bothmodelsuptofiveyearspriortofailure.Ourresultssuggestthatweareableto
predict bankruptcieswithsignificantlyhigheraccuracythana50/50guessingstrategy.
Further,wefoundwewereabletopredictbankruptciesupthefiveyearspriortothem
occurring,usingboththetraditionalMDAmodelandtheSVMmodel.Whencomparing
the twowefoundtheMDAmodelachievehigherpredictionaccuracyoneyearpriorto
failure.
Degree
Master 2-years
Other description
MSc in Finance
Collections
View/ Open
Date
2022-06-29Author
Akgün Dehiller, Dennis
Arif, Milan
Series/Report no.
2022:152
Language
eng