• English
    • svenska
  • svenska 
    • English
    • svenska
  • Logga in
Redigera dokument 
  •   Startsida
  • Student essays / Studentuppsatser
  • Graduate School
  • Master theses
  • Redigera dokument
  •   Startsida
  • Student essays / Studentuppsatser
  • Graduate School
  • Master theses
  • Redigera dokument
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predicting bankruptcies in Swedish manufacturing firms A comparison between traditional statistical and machine learning methods

Sammanfattning
The purposeofthispaperistoexaminewhetherwecanpredictbankruptciesinSwedish industrial andmanufacturingSMEsbeforetheyoccur.Toconductthepredictionsweuse a traditionalstatisticalmodel,multiplediscriminantanalysis(MDA)andamoremodern machinelearningapproachinwhichweutilizesupportvectormachines(SVM).Wethen compare thetwomodelsinordertofindoutwhichofthemperformsthebest.Further,we examine howmanyyearspriortofailureweareabletopredictthebankruptcy,andthus test bothmodelsuptofiveyearspriortofailure.Ourresultssuggestthatweareableto predict bankruptcieswithsignificantlyhigheraccuracythana50/50guessingstrategy. Further,wefoundwewereabletopredictbankruptciesupthefiveyearspriortothem occurring,usingboththetraditionalMDAmodelandtheSVMmodel.Whencomparing the twowefoundtheMDAmodelachievehigherpredictionaccuracyoneyearpriorto failure.
Examinationsnivå
Master 2-years
Övrig beskrivning
MSc in Finance
URL:
https://hdl.handle.net/2077/72392
Samlingar
  • Master theses
Fil(er)
2022-152.pdf (2.659Mb)
Datum
2022-06-29
Författare
Akgün Dehiller, Dennis
Arif, Milan
Serie/rapportnr.
2022:152
Språk
eng
Metadata
Visa fullständig post

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV
 

 

Visa

VisaSamlingarI datumordningFörfattareTitlarNyckelordDenna samlingI datumordningFörfattareTitlarNyckelord

Mitt konto

Logga inRegistrera dig

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV