Predicting bankruptcies in Swedish manufacturing firms A comparison between traditional statistical and machine learning methods
Sammanfattning
The purposeofthispaperistoexaminewhetherwecanpredictbankruptciesinSwedish
industrial andmanufacturingSMEsbeforetheyoccur.Toconductthepredictionsweuse
a traditionalstatisticalmodel,multiplediscriminantanalysis(MDA)andamoremodern
machinelearningapproachinwhichweutilizesupportvectormachines(SVM).Wethen
compare thetwomodelsinordertofindoutwhichofthemperformsthebest.Further,we
examine howmanyyearspriortofailureweareabletopredictthebankruptcy,andthus
test bothmodelsuptofiveyearspriortofailure.Ourresultssuggestthatweareableto
predict bankruptcieswithsignificantlyhigheraccuracythana50/50guessingstrategy.
Further,wefoundwewereabletopredictbankruptciesupthefiveyearspriortothem
occurring,usingboththetraditionalMDAmodelandtheSVMmodel.Whencomparing
the twowefoundtheMDAmodelachievehigherpredictionaccuracyoneyearpriorto
failure.
Examinationsnivå
Master 2-years
Övrig beskrivning
MSc in Finance
Samlingar
Fil(er)
Datum
2022-06-29Författare
Akgün Dehiller, Dennis
Arif, Milan
Serie/rapportnr.
2022:152
Språk
eng