• English
    • svenska
  • svenska 
    • English
    • svenska
  • Logga in
Redigera dokument 
  •   Startsida
  • Sahlgrenska Academy / Sahlgrenska akademin
  • Institute of Clinical Sciences / Institutionen för kliniska vetenskaper
  • Doctoral Theses / Doktorsavhandlingar Institutionen för kliniska vetenskaper
  • Redigera dokument
  •   Startsida
  • Sahlgrenska Academy / Sahlgrenska akademin
  • Institute of Clinical Sciences / Institutionen för kliniska vetenskaper
  • Doctoral Theses / Doktorsavhandlingar Institutionen för kliniska vetenskaper
  • Redigera dokument
JavaScript is disabled for your browser. Some features of this site may not work without it.

Virtual Reality Simulations and Interventional Radiology

Sammanfattning
INTRODUCTION: Use of virtual reality (VR) simulators in endovascular interventional education has become increasingly popular yet many questions surrounding this nascent technology remain unanswered. While progress has been made in other disciplines such as endoscopy and minimally invasive surgery, scientific evidence investigating endovascular simulations remains limited. The general aim of this dissertation was to conduct validation studies to elucidate the potential for skills acquisition and assessment outside of the catheterization laboratory using VR simulation. Endovascular skills transfer from VR-Lab to the porcine laboratory (P-Lab) was also investigated. An economic analysis was performed to assist in the establishment of a realistic VR implementation strategy. MATERIALS AND METHODS: Simulator validations were conducted by comparing performance metrics collected from novices and experienced physicians using Student’s t-test. Performance metrics were recorded by the simulator while participants treated simulated patients suffering from renal artery stenosis (RAS) and carotid artery stenosis (CAS). Endovascular skills transfer was tested using the P-Lab as an approximation of the human catheterization laboratory. A group of endovascular novices were evaluated in the P-Lab and the VR-Lab using an objective skills assessment of technical skills (OSATS), yielding a Total Score. Participants were then randomized into different training groups, put through their assigned training schema and subsequently re-evaluated in both laboratories. ANCOVA analysis was conducted to compare the cumulative effect each type of training had on Total Score. Consumable and rental fees from the skills transfer study were used to calculate the comparison data for the economical analysis. RESULTS: Face validity was demonstrated for both the renal and carotid artery stenosis modules. Neither construct validity study produced results which differentiated between the expert and novice performance metrics except for fluoroscopic and procedural times. VR-Lab training sessions generated skills which improved P-Lab performances. VR-Lab training cost less than the P-Lab using our economical analysis. CONCLUSIONS: Despite demonstrating face validity, VR-Lab simulations should not be used alone for skills assessment outside of the catheterization laboratory in its present form. Skills learned in virtual reality transfer favorably to the P-Lab and simulation training seems to offer a viable alternative of non-clinical training. The VR-Lab affords a more economical method to teach and practice endovascular skills compared to the P-lab. Further research is needed to elucidate the relative efficacies of both training methods
Delarbeten
I. Berry M, Lystig T, Reznick RK and Lönn L, Assessment of a Virtual Interventional Simulation Trainer, Journal of Endovascular Therapy, Apr 2006; 13(2), 237-43::pmid::16643079
 
II. Berry M, Lystig T, Beard J, Klingenstierna H, Reznick RK and Lönn L, Porcine Transfer Study: Virtual reality simulator training compared to porcine training in endovascular novices, Cardiovascular and Interventional Radiology, May-June 2007; 30(3), In press.::pmid::17225971
 
III. Berry M, Hellström M, Göthlin J, Reznick RK and Lönn L, Endovascular Training using Animals or Virtual Reality Systems: An Economic Analysis
 
IV. Berry M, Lystig T, Reznick RK and Lönn L, The Use of Virtual Reality for Training Carotid Artery Stenting: A Construct Validation Study
 
Examinationsnivå
Doctor of Philosophy (Medicine)
Universitet
Göteborg University. Sahlgrenska Academy
Institution
Inst of Clincial Sciences. Dept of Radiology
E-post
max_berry@hotmail.com
URL:
http://hdl.handle.net/2077/3188
Samlingar
  • Doctoral Theses / Doktorsavhandlingar Institutionen för kliniska vetenskaper
  • Doctoral Theses from Sahlgrenska Academy
  • Doctoral Theses from University of Gothenburg / Doktorsavhandlingar från Göteborgs universitet
Fil(er)
Thesis Frame (580.6Kb)
Abstract (26.90Kb)
Datum
2007-03-26
Författare
Berry, Max
Publikationstyp
Doctoral thesis
ISBN
978-91-628-7097-3
Språk
eng
Metadata
Visa fullständig post

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV
 

 

Visa

VisaSamlingarI datumordningFörfattareTitlarNyckelordDenna samlingI datumordningFörfattareTitlarNyckelord

Mitt konto

Logga inRegistrera dig

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV