• English
    • svenska
  • English 
    • English
    • svenska
  • Login
View Item 
  •   Home
  • Sahlgrenska Academy / Sahlgrenska akademin
  • Institute of Biomedicine / Institutionen för biomedicin
  • Doctoral Theses / Doktorsavhandlingar Institutionen för biomedicin
  • View Item
  •   Home
  • Sahlgrenska Academy / Sahlgrenska akademin
  • Institute of Biomedicine / Institutionen för biomedicin
  • Doctoral Theses / Doktorsavhandlingar Institutionen för biomedicin
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Studies on glycosphingolipids in infection, immunity and differentiation

Abstract
Cell surface glycoconjugates play a role in many biological processes such as responses to microbial infections, cell-cell interactions, differentiation, and inflammatory responses. The present work is focused on structural characterization of glycosphingolipids with potential roles in adhesion of Helicobacter pylori and Vibrio cholerae, differentiation of human pluripotent stem cells, and as blood group determinants. In the first study, the structural binding requirements of Helicobacter pylori BabA adhesin revealed a different carbohydrate binding potential than previously defined. Adhesion of H. pylori generalist, specialist and BabA deletion mutant strains were examined using mixtures of glycosphingolipids. An unexpected binding by specialist and generalist H. pylori to the hexaosylceramide region of porcine intestinal non-acid glycosphingolipids was found. After isolation and characterization by mass spectrometry and proton NMR, the binding-active glycosphingolipid was determined as Globo H hexaosylceramide (H type 4). Further binding studies demonstrated that the generalist strain, but not the specialist strain, also recognized Globo A heptaosylceramide (A type 4). Non-secretors have an increased risk of peptic ulcer disease although they express little or no H type 1 sequences, and thus no Leb. However, these individuals have a functional FUT1 enzyme that may produce the Globo H sequence, suggesting that Globo H hexaosylceramide might have a role in H. pylori adhesion to the gastric epithelium of non-secretor individuals. In the second study the carbohydrate binding potential of Vibrio cholerae was investigated. Binding-active glycosphingolipids, detected by the thin-layer chromatogram binding assay, were isolated and characterized by antibody binding, mass spectrometry and proton NMR. Thereby, three different binding modes were identified; the first was complex glycosphingo-lipids with GlcNAcβ3Galβ3/4GlcNAc sequence, the second glycosphingolipids with terminal Galα3Galα3Gal sequence, and the third lactosylceramide and related glycosphingolipids. V. cholerae with non-functional chitin binding protein GbpA bound to glycosphingolipids in the same manner as the wild type bacteria, demonstrating that the GbpA is not involved in glycosphingolipid recognition. In the third study the non-acid glycosphingolipids of human embryonic stem cells were structurally characterized. Chromatogram binding assays, mass spectrometry and proton NMR demonstrated the presence of type 2 core chain glycosphingolipids (neolactotetraosyl-ceramide, H type 2 pentaosylceramide, Lex pentaosylceramide, and Ley hexaosylceramide), and blood group A type 1 hexaosylceramide, along with the previously characterized glycosphingolipids with type 1 and type 4 core chains. Thus, the glycosphingolipid diversity of human embryonic stem cells is more complex than previously appreciated. The PX2 antigen is assumed to belong to the GLOB blood group system and has until further notice been assigned to that blood group. However the enzymatic machinery involved in PX2 synthesis has not been determined. In the fourth study, glycosphingolipids isolated from blood group AP1k erythrocytes, App erythrocytes and B3GALNT1 transfected MEG-01 cells were characterized by antibody binding and mass spectrometry. The B3GALNT1 transfected MEG-01 cells had an increased expression of PX2. No P antigen or PX2 were found in the AP1k erythrocytes, while the App erythrocytes expressed PX2, but no P1 and P antigens. The conclusion from these experiments is that the P synthase also is responsible for synthesis of the PX2 antigen.
Parts of work
I. Benktander J, Ångström J, Breimer ME, Teneberg S. Re-definition of the carbohydrate binding specificity of Helicobacter pylori BabA adhesin. 2012. J Biol Chem 287, 31712-24. ::doi::10.1074/jbc.M112.387654
 
II. Benktander J, Ångström J, Karlsson H, Teymournejad O, Lindén S, Lebens M, Teneberg S. The repertoire of glycosphingolipids recognized by Vibrio cholerae. 2013. PLoS One, 8, e53999. ::doi::10.1371/journal.pone.0053999
 
III. Barone A, Benktander J, Ångström J, Aspegren A, Björquist P, Teneberg S, Breimer ME. Structural complexity of non-acid glycosphingolipids in human embryonic stem cells grown under feeder-free conditions. 2013. J Biol Chem 288, 10035-50. ::doi::10.1074/jbc.M112.436162
 
IV. Westman JS*, Benktander J*, Storry JR*, Peyrard T, Hult AK, Hellberg A, Teneberg S, Olsson ML. Genetic basis of PX2, a recently acknowledged glycolipid blood group antigen. Submitted.
 
Degree
Doctor of Philosophy (Medicine)
University
University of Gothenburg. Sahlgrenska Academy
Institution
Institute of Biomedicine. Department of Medical Biochemistry and Cell Biology
Disputation
Fredagen den 8 maj, kl. 9.00, Hörsal Ragnar Sandberg, Medicinaregatan 7A
Date of defence
2015-05-08
E-mail
john.benktander@gu.se
URI
http://hdl.handle.net/2077/38348
Collections
  • Doctoral Theses / Doktorsavhandlingar Institutionen för biomedicin
  • Doctoral Theses from Sahlgrenska Academy
  • Doctoral Theses from University of Gothenburg / Doktorsavhandlingar från Göteborgs universitet
View/Open
Thesis frame (1.645Mb)
Abstract (55.84Kb)
Date
2015-04-17
Author
Benktander, John
Keywords
Glycosphingolipids
Mass spectrometry
Helicobacter pylori BabA
Vibrio cholerae
Human embryonic stem cells
Glycosyltransferase
PX2
Publication type
Doctoral thesis
ISBN
978-91-628-9322-4
Language
eng
Metadata
Show full item record

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV