• English
    • svenska
  • svenska 
    • English
    • svenska
  • Logga in
Redigera dokument 
  •   Startsida
  • Sahlgrenska Academy / Sahlgrenska akademin
  • Institute of Clinical Sciences / Institutionen för kliniska vetenskaper
  • Doctoral Theses / Doktorsavhandlingar Institutionen för kliniska vetenskaper
  • Redigera dokument
  •   Startsida
  • Sahlgrenska Academy / Sahlgrenska akademin
  • Institute of Clinical Sciences / Institutionen för kliniska vetenskaper
  • Doctoral Theses / Doktorsavhandlingar Institutionen för kliniska vetenskaper
  • Redigera dokument
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the role of surface properties for implant fixation : From finite element modeling to in vivo studies

Sammanfattning
The aim of this thesis was to gain a deeper understanding of the factors contributing to the fixation of bone-anchored implants, especially with regard to surface chemistry, surface topography and implant loading. The methodology used in the thesis ranges from systematic bench studies, computer simulations, experimental in vivo studies, to load cell measurements on patients treated with bone-anchored amputation prostheses. The bone response to the surface chemistry was the main factor of interest in paper I and II. It was evaluated by adding a low amount of Zr to electron beam melted Co–Cr–Mo implants in vivo using a rabbit model, and a novel Ti–Ta–Nb–Zr alloy was compared to cp–Ti in vivo using a rat model, respectively. Surface roughness parameters and factors related to the removal torque technique were identified in a systematic experimental study (Paper III). Finite element analysis was used to study the effect of surface topography and geometry on mechanical retention and fracture progression at the implant interface (Paper IV). In the last paper, site-specific loading of the bone-implant interface was measured on patients treated with bone-anchored amputation prosthesis. The effect of typical every-day loading for the bone-implant system was simulated by finite element analysis. Evaluation of retrieved tissue samples from a patient undergoing implant revision was conducted to determine the interfacial condition after long-term usage (Paper V). It was concluded that the surface topography, the surface chemistry and the medium surrounding the implant were all found to influence the stability of the implant. A model of interfacial retention and fracture progression around an implant was proposed. Observations of bone resorption around an amputation abutment can partly be explained by the long-term effect of daily loading. In summary, the implant surface properties can be tailored for improved biomechanical anchorage and optimal load transfer, thus reducing the risk of implant failures and complications in patients.
Delarbeten
I. Stenlund P et al. Osseointegration Enhancement by Zr doping of Co-Cr-Mo Implants Fabricated by Electron Beam Melting. Additive Manufacturing. 2015;6:6-15. ::doi::10.1016/j.addma.2015.02.002
 
II. Stenlund P et al. Bone response to a novel Ti-Ta-Nb-Zr alloy. Acta Biomater. 2015;0(25):165-175. ::doi::10.1016/j.actbio.2015.03.038
 
III. Stenlund P et al. Understanding mechanisms and factors related to implant fixation; a model study of removal torque. J Mech Behav Biomed Mater. 2014;34C:83-92. ::doi::10.1016/j.jmbbm.2014.02.006
 
IV. Murase K et al. 3D modeling of surface geometries and fracture progression at the implant interface. (In manuscript)
 
V. Stenlund P et al. The effect of loading on the bone around bone-anchored amputation prostheses. (In manuscript)
 
Examinationsnivå
Doctor of Philosophy (Medicine)
Universitet
University of Gothenburg. Sahlgrenska Academy
Institution
Institute of Clincial Sciences. Department of Biomaterials
Disputation
Onsdagen den 3 juni 2015, kl. 13.00, Hörsal Arvid Carlsson, Academicum, Medicinaregatan 3
Datum för disputation
2015-06-03
E-post
patrik.stenlund@sp.se
URL:
http://hdl.handle.net/2077/38371
Samlingar
  • Doctoral Theses / Doktorsavhandlingar Institutionen för kliniska vetenskaper
  • Doctoral Theses from Sahlgrenska Academy
  • Doctoral Theses from University of Gothenburg / Doktorsavhandlingar från Göteborgs universitet
Fil(er)
Thesis frame (50.27Mb)
Abstract (142.1Kb)
Datum
2015-05-13
Författare
Stenlund, Patrik
Nyckelord
Implant stability
Removal torque
Surface roughness
Surface chemistry
Finite element analysis
Experimental
In vivo
Osseointegration
Mechanical loading
Bone regeneration
Biomechanics
Publikationstyp
Doctoral thesis
ISBN
978-91-628-9380-4 (printed)
978-91-628-9381-1 (electronic)
Språk
eng
Metadata
Visa fullständig post

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV
 

 

Visa

VisaSamlingarI datumordningFörfattareTitlarNyckelordDenna samlingI datumordningFörfattareTitlarNyckelord

Mitt konto

Logga inRegistrera dig

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV