• English
    • svenska
  • English 
    • English
    • svenska
  • Login
View Item 
  •   Home
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Masteruppsatser
  • View Item
  •   Home
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Masteruppsatser
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fault Prediction in Android Systems through AI

Abstract
Software code defect prediction is important in improving code quality and the turnaround time of software products. In this thesis we investigate how to create and extract features, analyze existing work to create and realize a defect prediction technique that can be applied in an industrial setting. We conduct this investigation on version controlled source code from Git and Jira data. We identify and define metrics to be collected and build four Machine Learning (ML) models to predict if a file is clean or defective. We create a Cost Effectiveness (CE)evaluation technique to measure the performance of our ML models and achieve a score of 87% and an accuracy of 88 % on our best models.
Degree
Student essay
URI
http://hdl.handle.net/2077/62033
Collections
  • Masteruppsatser
View/Open
gupea_2077_62033_1.pdf (1.496Mb)
Date
2019-10-04
Author
Bassuday, Kirsten
Ahmed, Murtada
Keywords
Machine Learning
Data Science
Process Metrics
Git
Defect Prediction
Repository Mining
Jira
Language
eng
Metadata
Show full item record

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV