• English
    • svenska
  • svenska 
    • English
    • svenska
  • Logga in
Redigera dokument 
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Masteruppsatser
  • Redigera dokument
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Masteruppsatser
  • Redigera dokument
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fault Prediction in Android Systems through AI

Sammanfattning
Software code defect prediction is important in improving code quality and the turnaround time of software products. In this thesis we investigate how to create and extract features, analyze existing work to create and realize a defect prediction technique that can be applied in an industrial setting. We conduct this investigation on version controlled source code from Git and Jira data. We identify and define metrics to be collected and build four Machine Learning (ML) models to predict if a file is clean or defective. We create a Cost Effectiveness (CE)evaluation technique to measure the performance of our ML models and achieve a score of 87% and an accuracy of 88 % on our best models.
Examinationsnivå
Student essay
URL:
http://hdl.handle.net/2077/62033
Samlingar
  • Masteruppsatser
Fil(er)
gupea_2077_62033_1.pdf (1.496Mb)
Datum
2019-10-04
Författare
Bassuday, Kirsten
Ahmed, Murtada
Nyckelord
Machine Learning
Data Science
Process Metrics
Git
Defect Prediction
Repository Mining
Jira
Språk
eng
Metadata
Visa fullständig post

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV
 

 

Visa

VisaSamlingarI datumordningFörfattareTitlarNyckelordDenna samlingI datumordningFörfattareTitlarNyckelord

Mitt konto

Logga inRegistrera dig

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV