• English
    • svenska
  • English 
    • English
    • svenska
  • Login
View Item 
  •   Home
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Masteruppsatser
  • View Item
  •   Home
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Masteruppsatser
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep Learning for Deep Water: Robust classification of ship wakes with expert in the loop

Deep Learning for Deep Water: Robust classification of ship wakes with expert in the loop

Abstract
This work examines the applicability of the deep learning models to pattern recognition in acoustic ocean data. The features of the dataset include noise, data scarcity and the lack of labeled samples. A deep learning model is proposed for the task of automatic wake detection. It takes advantage of the availability of an expert in the marine science domain while using data generation and robustness techniques to enhance performance. The model shows encouraging results, although its performance decreases with heavily unbalanced data and the introduction of noise.
Degree
Student essay
URI
http://hdl.handle.net/2077/66646
Collections
  • Masteruppsatser
View/Open
Master thesis (3.200Mb)
Date
2020-10-06
Author
RYAZANOV, Igor
Keywords
machine learning
deep learning
pattern recognition
acoustic data analysis
shipping data
data augmentation
noise robustness
classification with data imbalance
expert-in-the-loop framework
Language
eng
Metadata
Show full item record

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV