• English
    • svenska
  • svenska 
    • English
    • svenska
  • Logga in
Redigera dokument 
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Masteruppsatser
  • Redigera dokument
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Masteruppsatser
  • Redigera dokument
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep Learning for Deep Water: Robust classification of ship wakes with expert in the loop

Deep Learning for Deep Water: Robust classification of ship wakes with expert in the loop

Sammanfattning
This work examines the applicability of the deep learning models to pattern recognition in acoustic ocean data. The features of the dataset include noise, data scarcity and the lack of labeled samples. A deep learning model is proposed for the task of automatic wake detection. It takes advantage of the availability of an expert in the marine science domain while using data generation and robustness techniques to enhance performance. The model shows encouraging results, although its performance decreases with heavily unbalanced data and the introduction of noise.
Examinationsnivå
Student essay
URL:
http://hdl.handle.net/2077/66646
Samlingar
  • Masteruppsatser
Fil(er)
Master thesis (3.200Mb)
Datum
2020-10-06
Författare
RYAZANOV, Igor
Nyckelord
machine learning
deep learning
pattern recognition
acoustic data analysis
shipping data
data augmentation
noise robustness
classification with data imbalance
expert-in-the-loop framework
Språk
eng
Metadata
Visa fullständig post

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV
 

 

Visa

VisaSamlingarI datumordningFörfattareTitlarNyckelordDenna samlingI datumordningFörfattareTitlarNyckelord

Mitt konto

Logga inRegistrera dig

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV