Adaptation of ventricular repolarization to heart rate change in humans
Abstract
Background: Life-threatening cardiac rhythm disturbances and sudden death are common manifestations of heart disease. Disturbances in electrical recovery (ventricular repolarization; VR) are important mechanisms behind ventricular arrhythmias, which often occur in relation to changes in heart rate (HR). It is therefore of both theoretical and clinical interest to study the adaptation of VR to changes in HR.
Aims: To investigate the adaptation of VR duration (QT and QTpeak) and VR heterogeneity (aka dispersion; T area, T amplitude and ventricular gradient) in response to changes in HR in subjects without structural heart disease and in patients with long QT syndrome type 1 (LQT1).
Methods: VR adaptation to HR changes was investigated in three clinical studies (four papers). In Paper I, patients scheduled for ablation of supraventricular tachycardia were incrementally paced in the atrium to an HR of 120–140 bpm, and the pacing was halted after 5 min. In Papers II and III, the HR increase was induced by sudden atrial or ventricular pacing, repeated at intervals comprising at least one month and was performed with the use of permanent pacemakers in patients with sick sinus disease. In Paper IV, an intravenous bolus of atropine was used to increase HR in patients with LQT1 and in healthy subjects. In all studies, vectorcardiography was used to record the electrical activity of the heart.
Results: Papers I and II: The adaptation of VR duration to a sustained HR change was mono-exponential, took 1.5–2.5 min and was longer following decreasing vs increasing HR. The intra-individual coefficient of variation for QT adaptation to increasing HR was ≤10%. Paper III: There were significant differences in the adaptation of global measures of electrical heterogeneity (dispersion) between HR increase induced by atrial vs ventricular pacing. For both pacing modes, the adaptation occurred in 2–3 rapidly changing phases. QT adaptation was faster in LQT1 patients vs healthy controls.
Conclusions: The adaptation of VR duration is gradual, takes longer in response to decreasing vs increasing HR and is intra-individually a stable process over time. The bi- or tri-phasic VR dispersion response possibly identifies a time period of electrical vulnerability. The atropine ‘stress test’ for VR adaptation is safe and feasible in LQT1 and could potentially be used as a future tool for risk assessment and prognosis.
Parts of work
I. Axelsson KJ, Brännlund A, Gransberg L, Lundahl G, Vahedi F, Bergfeldt L. Adaptation of ventricular repolarization duration and dispersion during changes in heart rate induced by atrial stimulation. Ann Noninvasive Electrocardiol. 2020;25(3):e12713. ::doi::10.1111/anec.12713 II. Axelsson KJ, Gransberg L, Lundahl G, Vahedi F, Bergfeldt L. Adaptation of ventricular repolarization time following abrupt changes in heart rate: comparisons and reproducibility of repeated atrial and ventricular pacing. Am J Physiol Heart Circ Physiol. 2021;320(1):H381-H392. ::doi::10.1152/ajpheart.00542.2020 III. Axelsson KJ, Gransberg L, Lundahl G, Bergfeldt L. Adaptation of ventricular repolarization dispersion during heart rate increase in humans: A roller coaster process. J Electrocardiol. 2021;68:90-100. ::doi::10.1016/j.jelectrocard.2021.07.016 IV. Dahlberg P*, Axelsson KJ*, Jensen SM, Lundahl G, Vahedi F, Gransberg L, Bergfeldt L. QT adaptation hysteresis during atropine induced heart rate increase: comparison between patients with long QT syndrome type 1 and healthy subjects. *Both authors contributed equally. In manuscript.
Degree
Doctor of Philosophy (Medicine)
University
University of Gothenburg. Sahlgrenska Academy
Institution
Institute of Medicine. Department of Molecular and Clinical Medicine
Disputation
Fredagen den 29 oktober 2021, kl. 9.00, Hörsal Arvid Carlsson, Academicum, Medicinaregatan 3, Göteborg
Date of defence
2021-10-29
karl-jonas.axelsson@gu.se
Date
2021-10-01Author
Axelsson, Karl-Jonas
Keywords
cardiac memory
hysteresis
long QT syndrome
QT adaptation
vectorcardiography
ventricular repolarization
Publication type
Doctoral thesis
ISBN
978-91-8009-400-9 (PRINT)
978-91-8009-401-6 (PDF)
Language
eng