Visa enkel post

dc.contributor.authorAkgün Dehiller, Dennis
dc.contributor.authorArif, Milan
dc.date.accessioned2022-06-29T09:19:26Z
dc.date.available2022-06-29T09:19:26Z
dc.date.issued2022-06-29
dc.identifier.urihttps://hdl.handle.net/2077/72392
dc.descriptionMSc in Financeen_US
dc.description.abstractThe purposeofthispaperistoexaminewhetherwecanpredictbankruptciesinSwedish industrial andmanufacturingSMEsbeforetheyoccur.Toconductthepredictionsweuse a traditionalstatisticalmodel,multiplediscriminantanalysis(MDA)andamoremodern machinelearningapproachinwhichweutilizesupportvectormachines(SVM).Wethen compare thetwomodelsinordertofindoutwhichofthemperformsthebest.Further,we examine howmanyyearspriortofailureweareabletopredictthebankruptcy,andthus test bothmodelsuptofiveyearspriortofailure.Ourresultssuggestthatweareableto predict bankruptcieswithsignificantlyhigheraccuracythana50/50guessingstrategy. Further,wefoundwewereabletopredictbankruptciesupthefiveyearspriortothem occurring,usingboththetraditionalMDAmodelandtheSVMmodel.Whencomparing the twowefoundtheMDAmodelachievehigherpredictionaccuracyoneyearpriorto failure.en_US
dc.language.isoengen_US
dc.relation.ispartofseries2022:152en_US
dc.titlePredicting bankruptcies in Swedish manufacturing firms A comparison between traditional statistical and machine learning methodsen_US
dc.typeText
dc.setspec.uppsokSocialBehaviourLaw
dc.type.uppsokH2
dc.contributor.departmentUniversity of Gothenburg/Graduate Schooleng
dc.contributor.departmentGöteborgs universitet/Graduate Schoolswe
dc.type.degreeMaster 2-years


Filer under denna titel

Thumbnail

Dokumentet tillhör följande samling(ar)

Visa enkel post